Refine
This thesis connects the endeavors of the winemaker’s intention in perfect and profitable wine making with an innovative technological application to use Internet of Things. Thereby the winemaker’s work may be supported and enriched – and enables until recent years still unthinkable optimization of managing and planning of his business, including close state control of different areas of his vineyard, and more than that, not ending up with the single grapevine. It is exemplarily shown in this thesis how to measure, transmit, store and make data available, exemplarily demonstrated with “live” temperature, air and soil humidity values from the vineyard. A modular architecture was designed for the system presented, which allows the use of current sensors, and similar low-voltage sensors, which will be developed in the future.
By using IoT devices in the vineyard, the winemaker advances to a new quality of precision of forecasted data, starting from live data of his vineyard. Of more and more importance, the winemaker can start immediate action, when unforeseen heavy weather conditions occur. Immediate use of current data enabled by a Cloud Infrastructure. For this system, an open service infrastructure is employed. In contrast to other published commercial approaches, the described solution is based on open source.
As an alone-standing part of this work, a physical prototype for measuring relevant parameters in the vineyard was de-novo designed and developed until fulfilling the set of specifications. The outlined features and requirements for a functioning data collection and autonomously transmitting device was developed, described, and the fulfilment by the prototype device were demonstrated. Through literature research and supportive orientationally live interviews of winemakers, the theory and the practical application were synchronized and qualified.
For the development of the prototype the general principles of development of an electronic device were followed, in particular the Design Science Research development rules, and principles of Quality Function Deployment. As a characteristic of the prototype, some principles like re-use of approved construction and material price of the building blocks of the device were taken into consideration as well (e.g. housing; Arduino; PCB). Parts reduction principles, decomplexation and simplified assembly, testing and field service were integrated to the development process by the modular design of the functional vineyard device components, e.g. with partial reference to innovative electrical cabinet construction system Modular-3.
The software architectural concept is based on a three-layer architecture inclusive the TTN infrastructure. The front end is realized as a rich web client, using a WordPress plugin. WordPress was chosen due to the wide adoption through the whole internet, enabling fast and easy user familiarization. Relevant quality issues have been tested and discussed in the view of exemplary functionality, extensibility, requirements fulfilment, as usability and durability of the device and the software.
The prototype was characterized and tested with success in the laboratory and in field exposition under different conditions, in order to allow a measurement and analysis of the fulfilment of all requirements by the selected and realized electronic construction and layout.
The solution presented may serve as a basis for future development and application in this special showcase and within similar technologies. A prognosis of future work and applications concludes this work.