Refine
Keywords
- volume rendering (1) (remove)
With the emergence of current generation head-mounted displays (HMDs), virtual reality (VR) is regaining much interest in the field of medical imaging and diagnosis. Room-scale exploration of CT or MRI data in virtual reality feels like an intuitive application. However in VR retaining a high frame rate is more critical than for conventional user interaction seated in front of a screen. There is strong scientific evidence suggesting that low frame rates and high latency have a strong influence on the appearance of cybersickness. This thesis explores two practical approaches to overcome the high computational cost of volume rendering for virtual reality. One lies within the exploitation of coherency properties of the especially costly stereoscopic rendering setup. The main contribution is the development and evaluation of a novel acceleration technique for stereoscopic GPU ray casting. Additionally, an asynchronous rendering approach is pursued to minimize the amount of latency in the system. A selection of image warping techniques has been implemented and evaluated methodically, assessing the applicability for VR volume rendering.