Grassland management has been increasingly intensified throughout centuries since mankind started to control and modify the landscape. Species communities were always shaped alongside management changes leading to huge alterations in species richness and diversity up to the point where land use intensity exceeded the threshold. Since then biodiversity became increasingly lost. Today, global biodiversity and especially grassland biodiversity is pushed beyond its boundaries. Policymakers and conservationists seek for management options which fulfill the requirements of agronomic interests as well as biodiversity conservation alongside with the maintenance of ecosystem processes. However, there is and will always be a trade-off.
Earlier in history, natural circumstances in a landscape mainly determined regionally adapted land use. These regional adaptions shaped islands for many specialist species, and thus diverse species communities, favoring the establishment of a high β-diversity. With the raising food demand, these regional and traditional management regimes became widely unprofitable, and the invention of mineral fertilizers ultimately led to a wide homogenization of grassland management and, as follows, the loss of biotic heterogeneity. In the course of the green revolution, this immediate coherence and the dependency between grassland biodiversity and traditional land use practices becomes increasingly noticed. Indeed, some traditional forms of management such as meadow irrigation have been preserved in a few regions and thus give us the opportunity to directly investigate their long-term relevance for the species communities and ecosystem processes. Traditional meadow irrigation was a common management practice to improve productivity in lowland, but also alpine hay meadows throughout Europe until the 20th century. Nowadays, meadow irrigation is only practiced as a relic in a few remnant areas. In parts of the Queichwiesen meadows flood irrigation goes back to the Middle Ages, which makes them a predestined as a model region to study the long- and short-term effects of lowland meadow irrigation on the biodiversity and ecosystem processes.
Our study pointed out the conservation value of traditional meadow irrigation for the preservation of local species communities as well as the plant diversity at the landscape scale. The structurally more complex irrigated meadows lead to the assumption of a higher arthropod diversity (Orthodoptera, Carabidae, Araneae), which could not be detected. However, irrigated meadows are a significant habitat for moisture dependent arthropod species. In the light of the agronomic potential, flood irrigation could be a way to at least reduce fertilizer costs to a certain degree and possibly prevent overfertilization pulses which are necessarily hazardous to non-target ecosystems. Still, the reestablishment of flood irrigation in formerly irrigated meadows, or even the establishment of new irrigation systems needs ecological and economic evaluation dependent on regional circumstances and specific species communities, at which this study could serve as a reference point.