In this thesis the possibilities for real-time visualization of OpenVDB
files are investigated. The basics of OpenVDB, its possibilities, as well
as NanoVDB and its GPU port, were studied. A system was developed
using PNanoVDB, the graphics API port of OpenVDB. Techniques were
explored to improve and accelerate a single ray approach of ray tracing.
To prove real-time capability, two single scattering approaches were
also implemented. One of these was selected, further investigated and
optimized to achieve interactive real-time rendering.
It is important to give artists immediate feedback on their adjustments, as
well as the possibility to change all parameters to ensure a user friendly
creation process.
In addition to the optical rendering, corresponding benchmarks were
collected to compare different improvement approaches and to prove
their relevance. Attention was paid to the rendering times and memory
consumption on the GPU to ensure optimal use. A special focus, when
rendering OpenVDB files, was put on the integrability and extensibility of
the program to allow easy integration into an existing real-time renderer
like U-Render.