Refine
Document Type
- Diploma Thesis (1)
- Study Thesis (1)
Keywords
- Bildverarbeitung (1)
- CAD (1)
- Computer-aided diagnosis (1)
- Grafikprozessor (1)
- Graphikprozessor (1)
- Mammographie (1)
- Multivariate Datenanalyse (1)
- SIFT-Verfahren (1)
Bei der subjektiven Interpretation von Mammographien werden Studien zufolge 10% bis 30% von Brustkrebserkrankungen im Frühstadium nicht erkannt. Eine weitere Fehlrate beziffert die fälschlich als möglichen Brustkrebs eingestuften Herde; diese Fehlrate wird mit 35% angegeben. Ein solche Fehleinschätzung hat für die Patientin weitreichende negative Folgen. Sie wird einer unnötigen psychischen und körperlichen Belastung ausgesetzt. Um solche Fehleinschätzungen zu minimieren, wird zunehmend die Computer-aided Detection/Diagnosis (CAD) eingesetzt. Das Ziel dieser Arbeit ist die Evaluation von Methoden multivariater Datenanalyse, eingesetzt zur Diagnose von Herdbefunden. Die aus der Gesichtserkennung bekannten Methoden Eigenfaces und Fisherfaces werden auf Mammographieaufnahmen angewendet, um eine Einordnung von Herdbefunden nach benign oder malign zu tätigen. Eine weitere implementierte Methode wird als Eigenfeature Regularization and Extraction bezeichnet. Nach einer Einführung zum medizinischen Hintergrund und zum aktuellen Stand der computer-assistierten Detektion/Diagnose werden die verwendete Bilddatenbank vorgestellt, Normierungsschritte aufgeführt und die implementierten Methoden beschrieben. Die Methoden werden der ROC-Analyse unterzogen. Die Flächen unterhalb der ROC-Kurven dienen als Maß für die Aussagekraft der Methoden. Die erzielten Ergebnisse zeigen, dass alle implementierten Methoden eine schwache Aussagekraft haben. Dabei wurden die Erwartungen an die Fisherface- und ERE-Methode nicht erfüllt. Die Eigenface-Methode hat, angewendet auf Herdbefunde in Mammogrammen, die höchsten AUC-Werte erreicht. Die Berücksichtigung der Grauwertnormierung in der Auswertung zeigt, dass die qualitativen Unterschiede der Mammogramme nicht ausschlaggebend für die Ergebnisse sind.
In der Bildverarbeitung werden zunehmend Algorithmen unter Verwendung von prägnanten Merkmalen implementiert. Prägnante Merkmale können sowohl für die optische Kameraposebestimmung als auch für die Kalibrierung von Stereokamerasystemen verwendet werden. Für solche Algorithmen ist die Qualität von Merkmalen in Bildern ein entscheidender Faktor. In den letzten Jahren hat sich an dieser Stelle das von D. Lowe 2004 vorgestellte SIFT-Verfahren hervorgetan. Problematisch bei der Anwendung dieses Verfahrens ist seine hohe Komplexität und der daraus resultierende hohe Rechenaufwand. Um das Verfahren zu beschleunigen, wurden bereits mehrere Implementationen veröffentlicht, die teils weiterhin ausschließlich die CPU nutzen, teils neben der CPU auch die GPU zur Berechnung bestimmter Teilbereiche des SIFT verwenden. Diese Implementationen gilt es zu hinterfragen. Ebenso ist die Qualität der Merkmale zu untersuchen, um die Verwendbarkeit von SIFT-Merkmalen für andere Bereiche der Bildverarbeitung gewährleisten zu können. Zur Visualisierung der Ergebnisse wurde eine GUI erstellt.