Refine
Institute
- Fachbereich 4 (1) (remove)
Social networks are ubiquitous structures that we generate and enrich every-day while connecting with people through social media platforms, emails, and any other type of interaction. While these structures are intangible to us, they carry important information. For instance, the political leaning of our friends can be a proxy to identify our own political preferences. Similarly, the credit score of our friends can be decisive in the approval or rejection of our own loans. This explanatory power is being leveraged in public policy, business decision-making and scientific research because it helps machine learning techniques to make accurate predictions. However, these generalizations often benefit the majority of people who shape the general structure of the network, and put in disadvantage under-represented groups by limiting their resources and opportunities. Therefore it is crucial to first understand how social networks form to then verify to what extent their mechanisms of edge formation contribute to reinforce social inequalities in machine learning algorithms.
To this end, in the first part of this thesis, I propose HopRank and Janus two methods to characterize the mechanisms of edge formation in real-world undirected social networks. HopRank is a model of information foraging on networks. Its key component is a biased random walker based on transition probabilities between k-hop neighborhoods. Janus is a Bayesian framework that allows to identify and rank plausible hypotheses of edge formation in cases where nodes possess additional information. In the second part of this thesis, I investigate the implications of these mechanisms - that explain edge formation in social networks - on machine learning. Specifically, I study the influence of homophily, preferential attachment, edge density, fraction of inorities, and the directionality of links on both performance and bias of collective classification, and on the visibility of minorities in top-k ranks. My findings demonstrate a strong correlation between network structure and machine learning outcomes. This suggests that systematic discrimination against certain people can be: (i) anticipated by the type of network, and (ii) mitigated by connecting strategically in the network.