Refine
Keywords
- Aluminiumorthophosphat (1)
- Bauxit (1)
- Bororthophosphat (1)
- Laugung (1)
- Natronwasserglas (1)
- Rieselmassen (1)
- Statistische Versuchsplanung (1)
- Tundish (1)
In the present dissertation, the structural interaction between potassium waterglass and aluminium metaphosphates (aluminium tetrametaphosphate and aluminium hexametaphosphate) were investigated in terms of the resettlement behaviour of the metaphosphates as hardening agents. The crystalline phase composition was described qualitatively and quantitatively in terms of powder diffraction patterns combined with Rietveld refinement. The amorphous phase content was determined by different spectroscopic methods (e.g. solid-state NMR, ATR-IR, and Raman spectroscopy). The solubility behaviour of the chemical hardening agents was investigated by optical emission spectroscopy and electron absorption spectroscopy. The mechanical properties of the samples were measured by three-point bending tests, resonance damping frequency analysis, and acid test. The structural framework of the chemically hardened waterglasses was explored by scanning electron microscopy method. It could be proven, that the reaction mechanism of the resettlement is strongly dependent on the structure of the aluminium metaphosphate. After the dissolution of the aluminium ions of aluminium tetrametaphosphate through the alkalic environment of the potassium waterglass, a potassium tetrametaphosphate is developed through an ion-exchange reaction with the waterglass` potassium ions. In the hexametaphosphate system, no analogous structure could be proven. Parallel to the ion-exchange reaction an incremental depolymerization of the cyclic metaphosphate structure to the final crystalline product potassium dihydrogen phosphate occurs. The drop in pH value due to the addition of the respective aluminium metaphosphate initiates a polycondensation of the potassium waterglass due to the decreasing stabilization of the waterglass. This process is increased by the depolymerization products of the metaphosphate, that remove further quantities of the alkali ions, which accelerates the polycondensation reaction due to a further decrease in pH value. The dissolved aluminium ions from the aluminium metaphosphate penetrate into the amorphous, hardening silica network and develops an alumosilicate binder matrix. Furthermore, amorphous hydrated aluminium phosphate phases develop in separate domains beside silicate, alumosilicate phases, and the crystalline phase contents e.g. potassium dihydrogenphosphate and the incomplete reacted aluminium metaphosphate. Consequently, the chemically hardened potassium waterglass binder is not necessarily homogenous. Regarding the mechanical and chemical properties, in summary with increasing alkali modulus the mechanical flexural strength, and the young modulus drop, while the chemical resistance towards acid attack, and the porosity of the samples increase. The change in the cyclic structure from aluminium tetrametaphosphate to aluminium hexametaphosphate leads to a drop in the acid resistance, the porosity of the samples, the flexural strength, and the young modulus.
Speziell in Anwendungen mit intensiver Temperatur- und Korrosionsbeanspruchung finden vermehrt Phosphate als sogenannte chemische Binder für Hochleistungskeramiken Verwendung. Konkret ist die Summe der Reaktionsverläufe während des Bindemechanismus in Folge einer thermisch-induzierten Aushärtung und somit die Wirkungsweise von Phosphatbindern prinzipiell innerhalb der Fachliteratur nicht eindeutig untersucht. Innerhalb dieser Arbeit wurden aufbauend auf einer umfangreichen strukturanalytischen Prüfungsanordnung (Festkörper-NMR, RBA, REM-EDX) einer exemplarischen phosphatgebundenen Al₂O₃-MgAl₂O₄-Hochtemperaturkeramikzusammensetzung unter Einbeziehung verschiedenartiger anorganischer Phosphate grundlegende Bindemechanismen charakterisiert. Mechanisch-physikochemische Eigenschaftsuntersuchungen (STA, Dilatometrie, DMA, KBF) deckten zudem den Einfluss der eingesetzten Phosphate auf die Eigenschaftsentwicklungen der Feuerfestkeramiken bezüglich des Abbindeverhaltens, der Biegefestigkeit sowie der thermischen Längenänderung auf, welche mit Strukturänderungen korreliert wurden. Es wurde gezeigt, dass sich Bindemechanismen bei Verwendung von Phosphaten temperaturgeleitet (20 °C ≤ T ≤ 1500 °C) grundsätzlich aus zwei parallel ablaufenden Reaktionsabfolgen zusammensetzen, wobei die sich entwickelnden Phosphatphasen innerhalb der Keramikmasse quantitativ und qualitativ bezüglich ihrer Bindewirkung bewertet wurden. Zum einen wurde die Bildung eines festigkeitssteigernden Bindenetzwerks aus Aluminiumphosphaten meist amorpher Struktur identifiziert und charakterisiert. Dieses bindungsfördernde, dreidimensionale Aluminiumphosphatnetzwerk baut sich innerhalb der Initialisierungs- und Vernetzungsphasen temperaturgeleitet kontinuierlich über multiple Vernetzungsreaktionen homogen auf. Zum anderen werden Reaktionsabfolgen durch parallel ablaufende Strukturumwandlungen nicht aktiv-bindender Phosphatspezies wie Magnesium-, Calcium- oder Zirkoniumphosphate ergänzt, welche lediglich thermische Umwandlungsreaktionen der Ausgangsphosphate darstellen. Vermehrt bei T > 800 °C geht das phosphatische Bindenetzwerk Festkörperreaktionen mit MgAl₂O₄ unter Ausbildung und Agglomeration von Magnesium-Orthophosphat-Sinterstrukturen ein. Die Bildung dieser niedrigschmelzenden Hochtemperaturphasen führt zu einem teilweisen Bruch des Bindenetzwerks.
In der vorliegenden Arbeit wird das thermochemische Wechselwirkungsverhalten verschiedener Magnesiakohlenstoffmaterialen in Abhängigkeit verschiedener Einflussgrößen wissenschaftlich untersucht. Schwerpunkte der experimentellen Arbeiten bilden thermoanalytische Experimente, Gefügeuntersuchungen der Magnesiakohlenstoff-Proben sowie thermodyna-mische Berechnungen und Auswertungen durch CAT (Computer Aided Thermochemistry) mittels des Softwarepakets FactSage.
Erster Themenbereich dieser Arbeit ist die Untersuchung des Einflusses der in dem Rohstoff Magnesia enthaltenen mineralogischen Nebenphasen Merwinit (C3MS2), Monticellit (CMS) und Belit (C2S) auf den carbothermisch induzierten Verschleiß im MgO-C-Material. Für die Messreihen wurden die Nebenphasen eigens synthetisiert und hiermit MgO-C-Nebenphase-Modellwerkstoffe hergestellt. Die Nebenphase Monticellit ist unbeständig gegenüber der carbothermischen Reduktion. Monticellit wird im MgO-C-Gefüge durch Kohlenstoff reduziert und hieraus ergibt sich ein erhöhter Gewichtsverlust des Probenmaterials. Auch Merwinit wird bei T = 1600°C reduziert, der Gewichtsverlust wird dadurch allerdings nicht erhöht. Belit ist im MgO-C-Gefüge stabil gegenüber carbothermischer Reduktion.
Ein weiterer Schwerpunkt der Arbeit lag auf der Untersuchung des Einflusses des klassischen Antioxidans Aluminium auf die thermochemische Stabilität von MgO-C. Bei geringen Sauerstoffpartialdrücken ist die Reaktion des Aluminium-Metalls bzw. des bereits zu Al4C3 carbidisierten Aluminiums mit dem steineigenen Periklas unter Mg(g)-Bildung möglich, was einen erhöhten Gewichtsverlust zur Folge hat. Aber auch nach der Oxidation zu Al2O3 bzw. Spinell liegt Aluminium in signifikanten Mengen als Al(g) und Al2O(g) in der Gasphase vor und greift des Weiteren die Nebenphasen an, was ebenfalls zu einem messbaren Gewichtsverlust führt.
Dritter Arbeitsschwerpunkt war die Untersuchung des Einflusses des Umgebungsdruckes auf die carbothermische Reduktion von MgO. Die Ergebnisse zeigen, dass der Druck sich in zweierlei Hinsicht auf die carbothermische Reduktion von MgO auswirkt. Zum einen bewirkt ein sinkender Umgebungsdruck eine Beschleunigung der carbothermischen Reduktion durch die Verschiebung des thermodynamischen Gleichgewichts auf die Produktseite. Des Weiteren sorgt er für einen schnelleren Abtransport der Produktgase vom Reaktionsort und ver-hindert somit die Einstellung eines lokalen Gleichgewichts im Gefüge. Dritter Effekt ist die mit steigendem Druck verstärkt ablaufende Kohlenstoffoxidation durch Umgebungssauerstoff, da die Sauerstoffmenge in der Umgebung des MgO-C-Materials vom Umgebungsdruck bestimmt wird. Für die Geschwindigkeit des thermochemischen Verschleißes von Magnesiakohlenstoffmaterialien, der immer eine Kombination aus Kohlenstoffoxidation und carbothermischer Reduktion darstellt, bedeutet dies, dass sie in Abhängigkeit vom Umgebungsdruck in unterschiedlichem Ausmaß von diesen beiden Reaktionen beeinflusst wird.
Refractory dry-vibratable mixes, which consist of a mineral filling material and an organic or anorganic binder system, are widely used for linings in industrial aggregates, where a very high temperature resistance is required (e.g. steel industry). During lining, all compounds are mixed and hardening is chemically or thermally initiated. The time span required for hardening is of special relevance for the application of refractory dry-vibratable mixes. It should be long enough for adequate processability, but simultaneously avoid too long downtimes. Prediction or regulation of the hardening time, necessary for an ideal processing, is currently limited. One the one hand, this is a result of the lack of an appropriate method for time-dependent determination of the harding process. On the other hand, the mechanisms responsible for this very complex process have not yet been investigated in detail and the effect of influencing factors, like the temperature or the composition of the refractory dry-vibratable mixes, are poorly documented.
To make a contribution to the understanding of the hardening mechanism of refractory dry-vibratable mixes, it was the aim of the present work, to develop an appropriate test method for the time-dependent investigation of this process. This was realized by means of the dynamic-mechanical analysis. In addition, the hardening mechanism was described for a refractory dry-vibratable mix with a binder system, which consists of a waterglass and a phosphate hardener (AlPO4 und BPO4), using supplement gravimetric investigations and determining solubility behavior of the phosphates. By means of X-ray diffraction analysis, nuclear magnetic resonance spectroscopy and scanning electron microscopy, the impact of the hardening mechanism on the crystal and amorphous structure was studied. It could be shown, that according to the two phosphates, the hardening leads to different network structures in respect of their link denseness. These structure characteristics correlate with the speed of the hardening reactions. In addition, the impact on selected properties (thermal linear deformation, temperature-dependent phase development and phase transition) could be deducted.
Modellbildung zum Abbindeverhalten von PCE-verflüssigten und CA-Zement-gebundenen Feuerbetonen
(2021)
Feuerbetone werden als Auskleidung in industriellen Hochtemperaturaggregaten, wie beispielsweise in der Eisen- und Stahlindustrie, eingesetzt. Nach dem Mischen und dem Gießen eines Feuerbetons in Formen bzw. Schalungen, muss dieser abbinden und eine ausreichende Festigkeit ausbilden. Die Kinetik der Abbindevorgänge und somit auch das Erhärtungsverhalten variiert dabei stark in Abhängigkeit der Zusammensetzung, vor allem hinsichtlich des Bindemittels und der Additive, des Feuerbetons. In der Praxis der Herstellung von Feuerbetonen kommt es häufig zu Beschädigungen der hergestellten Bauteile oder Auskleidungen durch das Fließen noch nicht ausreichend abgebundener Feuerbetone bzw. die Beschädigung von Ecken und Kanten während des Ausschalens oder Bauteilen reißen durch mechanische Belastung beim Umsetzen oder beim Transport. Diese Beschädigungen basieren auf Fehleinschätzungen zum Abbindefortschritt und der korrespondierenden Festigkeitsausprägung der Feuerbetone. Diese wiederum sind auf Lücken im Stand der Technik zurück zu führen.
Für PCE-verflüssigte und CA-Zement-gebundene Korund-Feuerbetonen mit einer Al₂O₃- und Al₂O₃-SiO₂-Matrix, werden die Defizite des Stands der Technik für diese Feuerbetonklasse identifiziert: Diese liegen im Bereich der Verflüssigungswirkung und des ersten Ansteifens der Feuerbetone, der Hydratation des CA-Zements in den Feuerbetonen und der Festigkeitsausprägung der Feuerbetone. Hieraus leitet sich ein entsprechender Forschungsbedarf ab.
Am Beispiel von zwei PCE-verflüssigten (PCE mit kurzer Hauptkette und langen Seitenketten sowie PCE mit langer Hauptkette und kurzen Seitenketten) und CA-Zement-gebundenen (70 % Al₂O₃) Feuerbetonen mit einer reaktivtonerde-basierten und einer reaktivtonerde-mikrosilika-basierten Matrix werden abbindekinetische Untersuchungen durchgeführt. Anhand verschiedener abbindekinetischer Messmethoden, wie Schallgeschwindigkeit oder elektrischer Leitfähigkeit, und einigen ergänzenden Messung, wie beispielsweise das ζ-Potential, wird der Abbindeverlauf der Feuerbetone untersucht und die Defizite aus dem Stand der Technik aufgeklärt.
Im Detail wurde der Stand der Technik um folgende Erkenntnisse ergänzt:
• Verflüssigung von Feuerbetonen mit PCE-Molekülen: Es wurde festgestellt, dass die Verflüssigungswirkung und das erste Ansteifen maßgeblich durch die Struktur der Verflüssigermoleküle hervorgerufen werden.
PCE-Moleküle mit langen Seitenketten verflüssigen eher sterisch. Durch die Vermittlung von Ca²⁺ aus dem CA-Zement wird die Adsorption der PCE-Moleküle verstärkt. Freie PCE-Moleküle können auf CAH-Phasen (Hydratationsprodukte) adsorbieren und somit die Fließfähigkeit des Feuerbetons für eine gewisse Zeit aufrechterhalten.
PCE-Moleküle mit kurzen Seitenketten verflüssigen elektrosterisch. Bei Lösung von Ca²⁺ aus dem CA-Zement kommt es zu einer Ca-PCE Gel-Bildung und einer korrespondierenden Koagulation der Feuerbetonmatrix und der Feuerbeton steift zeitnah nach dem Mischen an.
• Hydratation von CA-Zement: Die Hydratation von CA-Zement in den Feuerbetonen wird wesentlich durch die Länge der Seitenketten der PCE-Moleküle bzw. der Anwesenheit von Zitronensäure beeinflusst.
In Feuerbetonen die mit PCE-Molekülen mit langen Seitenketten verflüssigt wurden, kann der CA-Zement weitestgehend frei hydratisieren. Der CAH-Phasenanteil steigt in zwei Abschnitten, getrennt von einer dormanten Phase. Die dormante Phase der CA Zementhydratation wurde auf eine Lösungshemmung der Al-O-H-Passivierungsschicht auf dem CA-Zement bei mäßigem pH-Wert (pH = 12,3) zurückgeführt.
In Feuerbetonen die mit PCE-Molekülen mit kurze Seitenketten und Zitronensäure verflüssigt werden, wird die Hydratationsreaktion durch eine Ca-Citrat-PCE-Al(OH)₄-Gelbildung stark gehemmt. Es besteht die Vermutung, dass die Bindung von Ca²⁺ in dem Gel zum einen eine sehr ausgeprägte dormante Phase (pH < 12,3), mit einer schlechten Löslichkeit der Passivierungsschicht, bewirkt und zum anderen auch die Fällung von CAH-Phasen unterdrückt.
• Festigkeitsausprägung von CA-Zement-gebundenen Feuerbetonen:
Eine Koagulation bewirkt die erste Festigkeitssteigerung der Feuerbetone auf σB < 1 MPa. Im Anschluss findet die Hauptfestigkeitssteigerung auf Grund von Austrocknung durch Hydratation und Verdunstung statt. Der weitere Teil der Festigkeitssteigerung wird durch die Reduzierung der Porosität durch expansive CA-Zementhydratation und die hohe spezifische Oberfläche sowie deren weitere Erhöhung durch die CA-Zementhydratation bewirkt.
Aus den einzelnen abbindekinetischen Effekten können, zusammen mit dem Stand der Technik und den neuen Erkenntnissen, mikrostrukturelle Abbindemodelle und Modelle zur Festigkeitsentwicklung der Feuerbetone abgeleitet werden. In Folge kann für die zwei Feuerbetone zu jedem Zeitpunkt des Abbindens eine Aussage zum Abbindefortschritt und zur Festigkeitsausprägung getätigt werden. Einige der Abbindemechanismen und festigkeitsbildenden Mechanismen können auf andere Feuerbetonzusammensetzungen übertragen werden.
Organic binder mixtures and process additives have been used in refractory materials for a long time due to their property-improving effect. Coal tar pitches in particular can contain thousands of chemical compounds, of which especially polycyclic aromatic hydrocarbons (PAHs) are known to be carcinogenic and mutagenic and thus pose a risk to both the environment and human health. However, despite intensive research, the exact structure of these carbon mixtures is still not fully clarified. This is becoming an increasing problem, especially with regard to more stringent legal requirements arising from REACH, the European Chemicals Regulation for the Registration, Evaluation, Authorization and Restriction of Chemicals. Furthermore, the knowledge of the structural and chemical composition is also of great importance for optimal processing of the carbon mixtures to high-quality technical products. In the present work, an analytical strategy for the investigation of complex carbon mixtures containing PAHs is developed. Due to their complexity, a combination of different methods is used, including elemental analysis, solvent extraction, thermogravimetry, differential thermal analysis, raman and infrared spectroscopy as well as high-resolution mass spectrometry. In addition, a procedure for the evaluation of mass spectrometric data based on multivariate statistical methods such as hierarchical cluster analysis and principal component analysis is developed. The application of the developed analytical strategy to various industrially used carbon-based binder mixtures allowed the elucidation of characteristic properties, including aromaticity, molecular mass distribution, degree of alkylation and elemental composition. It was also shown that combining high-resolution time-of-flight mass spectrometry with multivariate statistical data analysis is a fast and effective tool for the classification of complex binder mixtures and the identification of characteristic molecular structures. In addition, the analytical strategy was applied to manufactured refractory products. Despite the small amount of the contained organic phase, characteristic structural features of each sample could be identified and extracted, which enabled an unambiguous classification of the refractory products.
Bauxite is, among other raw materials, an important material for the production of refractories. However, the availability of refractory raw material grades is limited worldwide. As high iron contents have a negative influence on the temperature resistance of the refractory material produced, a maximum iron oxide content of 2 wt.-% in the bauxite is acceptable. This means that only native raw materials from a few deposits can be used. In order to counteract the problem of too high iron oxide contents in natural bauxites, the possibility of processing bauxite for the refractory industry by using an acid leaching process was to be investigated within the scope of this work. In previous studies on this topic, some investigations on iron leaching have already been carried out on individual bauxites. However, the resulting bauxite composition was mostly neglected in its entirety and only the influences of individual leaching parameters on the leaching result were investigated independently. Moreover, the results and procedures generated are not generally valid and cannot be transferred to bauxites of other chemical or mineralogical compositions.
In order to clarify the open questions in the processing of natural bauxites, leaching tests with hydrochloric acid were carried out on five different bauxites within this work. By using computerized statistical design of experiments, an individual model was generated for each bauxite to predict the optimal factor settings. The factors investigated were acid concentration, solid-acid ratio, leaching temperature, leaching time and grain fraction. The general planning method for bauxite processing developed in this context contains all necessary factors, useful factor settings and the effects to be considered during planning and evaluation. It could be shown that, based on this planning method, a significant, individual model can be created for each of the bauxites investigated, which predicts the optimal leaching settings for the corresponding bauxite. Furthermore, it was found that the transfer of an already created model to another bauxite of similar composition is possible. Based on the results obtained from the leaching tests and model fittings, in combination with further results on the structural analysis of the bauxites, insights into the leachability of various aluminium and iron minerals from bauxite could be gained.
To develop a sustainable acid leaching process, the possibility of regenerating the contaminated acid produced was also tested as an example. It was shown that liquid-liquid extraction can extract more than 99 % of the iron present in the solution and that the regenerated acid can then be reused for the leaching process.
Nanoparticles are sensitive and robust systems; they are particularly reactive due to their large surface area and have properties that the bulk material does not have. At the same time, the production of nanoparticles is challenging, because even with the same parameters and conditions, the parameters can vary slightly from run to run. In order to avoid this, this work aims to develop a continuous synthesis in the microjet reactor for nanoceria. The aim is to obtain monodisperse nanoparticles that can be used in biosensors.
This work focuses on two precipitation syntheses with the intermediate steps of cerium carbonate and cerium hydroxide, as well as a microemulsion synthesis for the production of nanoceria. The cerium oxide nanoparticles are compared using different characterisation and application methods. The synthesised nanoparticles will be characterised with respect to their size, stability, chemical composition and catalytic capabilities, by electron microscopy, X-ray diffraction, Raman spectroscopy and photoelectron spectroscopy.
The biosensor systems to evaluate the nanoceria are designed to detect histamine and glucose or hydrogen peroxide, which are resulting from the oxidation of histamine and glucose. Hydrogen peroxide and glucose are detected by an electrochemical sensor and histamine by a colorimetric sensor system.