Refine
Year of publication
- 2013 (1) (remove)
Keywords
- Agrochemikalien (1)
- Chironomus riparius (1)
- Endokrine Regulation (1)
- Süßwasserhaushalt (1)
- Umweltchemikalie (1)
- Wachstumsregler (1)
- Zuckmücken (1)
- aquatic ecotoxicology (1)
- endocrine disrupting chemicals (1)
- endokrine Regulation (1)
Agricultural pesticides, especially insecticides, are an integral part of modern farming. However, these may often leave their target ecosystems and cause adverse effects in non- target, especially freshwater ecosystems, leading to their deterioration. In this thesis, the focus will be on Insect Growth Regulators (IGRs) that can in many ways cause disruption of the endocrine system of invertebrates. Freshwater invertebrates play important ecological, economic and medical roles, and disruption of their endocrine systems may be crucial, considering the important role hormones play in the developmental and reproductive processes in organisms. Although Endocrine Disruption Chemicals (EDCs) can affect moulting, behaviour, morphology, sexual maturity, time to first brood, egg development time, brood size (fecundity), and sex determination in invertebrates, there is currently no agreement upon how to characterize and assess endocrine disruption (ED). Current traditional ecotoxicity tests for Ecological Risk Assessment (ERA) show limitations on generating data at the population level that may be relevant for the assessment of EDCs, which effects may be sublethal, latent and persist for several generations of species (transgenerational).
It is therefore the primary objective of this thesis to use a test method to investigate adverse effects of EDCs on endpoints concerning development and reproduction in freshwater invertebrates. The full life-cycle test over two generations that includes all sensitive life stages of C. riparius (a sexual reproductive organism) allows an assessment of its reproduction and should be suitable for the investigation of long-term toxicity of EDCs in freshwater invertebrates. C. riparius is appropriate for this purpose because of its short life cycle that enables the assessment of functional endpoints of the organism over several generations. Moreover, the chironomid life cycle consists of a complete metamorphosis controlled by a well-known endocrine mechanism and the endocrine system of insects has been most investigated in great detail among invertebrates. Hence, the full life-cycle test with C. riparius provides an approach to assess functional endpoints (e.g. reproduction, sex ratio) that are population-relevant as a useful amendment to the ERA of EDCs. In the laboratory, C. riparius was exposed to environmentally-relevant concentrations of the selected IGRs in either spiked water or spiked sediment scenario over two subsequent generations.
The results reported in this thesis revealed significant effects of the IGRs on the development and the reproduction of C. riparius with the second (F1) generation showing greater sensitivity. These findings indicated for the first time the suitability of multigenerational testing for various groups of EDCs and strongly suggested considering the full life-cycle of C. riparius as an appropriate test method for a better assessment of EDCs in the freshwater environment. In conclusion, this thesis helps to detect additional information that can be extrapolated at population level and, thus, might contribute to better protection of freshwater ecosystems against the risks of Endocrine Disrupting Chemicals (EDCs.) It may furthermore contribute to changes in the ERA process that are necessary for a real implementation of the new European chemical legislation, REACH (Registration, Evaluation Authorization and Restriction of Chemicals). Finally, significant interactions between temperature, chemical exposure and generation were reported for the first time and, may help predict impacts that may occur in the future, in the field, under predicted climate change scenarios.