• Deutsch
Login

OPUS

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Gerner, Nadine (1)
  • Mbaka, John Gichimu (1)

Year of publication

  • 2015 (1)
  • 2018 (1)

Keywords

  • traits (2) (remove)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Biomonitoring with Organism Traits and Impacts of Small Impoundments on Stream Ecological Integrity and Food Web (2015)
Mbaka, John Gichimu
Change of ecosystems and the associated loss of biodiversity is among the most important environmental issues. Climate change, pollution, and impoundments are considered as major drivers of biodiversity loss. Organism traits are an appealing tool for the assessment of these three stressors, due to their ability to provide mechanistic links between organism responses and stressors, and consistency over wide geographical areas. Additionally, traits such as feeding habits influence organismal performance and ecosystem processes. Although the response of traits of specific taxonomic groups to stressors is known, little is known about the response of traits of different taxonomic groups to stressors. Additionally, little is known about the effects of small impoundments on stream ecosystem processes, such as leaf litter decomposition, and food webs. After briefly introducing the theoretical background and objectives of the studies, this thesis begins by synthesizing the responses of traits of different taxonomic groups to climate change and pollution. Based on 558 peer-reviewed studies, the uniformity (i.e., convergence) in trait response across taxonomic groups was evaluated through meta-analysis (Chapter 2). Convergence was primarily limited to traits related to tolerance. In Chapter 3, the hypothesis that small impoundments would modify leaf litter decomposition rates at the sites located within the vicinity of impoundments, by altering habitat variables and invertebrate functional feeding groups (FFGs) (i.e., shredders), was tested. Leaf litter decomposition rates were significantly reduced at the study sites located immediately upstream (IU) of impoundments, and were significantly related to the abundance of invertebrate shredders. In Chapter 4, the invertebrate FFGs were used to evaluate the effect of small impoundments on stream ecosystem attributes. The results showed that heterotrophic production was significantly reduced at the sites IU. With regard to food webs, the contribution of methane gas derived carbon to the biomass of chironomid larvae was evaluated through correlation of stable carbon isotope values of chironomid larvae and methane gas concentrations. The results indicated that the contribution of methane gas derived carbon into stream benthic food web is low. In conclusion, traits are a useful tool in detecting ecological responses to stressors across taxonomic groups, and the effects of small impoundments on stream ecological integrity and food web are limited.
Identifying ecological effects of organic toxicants and metals using the SPEAR approach (2018)
Gerner, Nadine
The aquatic environment is exposed to multiple environmental pressures and mixtures of chemical substances, among them petroleum and petrochemicals, metals, and pesticides. Aquatic invertebrate communities are used as bioindicators to reflect long-term and integral effects. Information on the presence of species can be supplemented with information on their traits. SPEAR-type bioindicators integrate such trait information on the community level. This thesis aimed at enhancing specificity of SPEAR-type bioindicators towards particular groups of chemicals, namely to mixtures of oil sands-derived compounds, hydrocarbons, and metals. For developing a bioindicator for discontinuous contamination with oil-derived organic toxicants, a field study was conducted in the Canadian oil sands development region in Northern Alberta. The traits ‘physiological sensitivity towards organic chemicals’ and ‘generation time’ were integrated to develop the bioindicator SPEARoil, reflecting the community sensitivity towards oil sands derived contamination in relation to fluctuating hydrological conditions. According to the SPEARorganic approach, a physiological sensitivity ranking of taxa was developed for hydrocarbon contamination originating from crude oil or petroleum distillates. For this purpose, ecotoxicological information from acute laboratory tests was enriched with rapid and mesocosm test results. The developed Shydrocarbons sensitivity values can be used in SPEAR-type bioindicators. To specifically reflect metal contamination in streams via bioindicators, Australian field studies were re-evaluated with focus on the traits ‘physiological metal sensitivity’ and ‘feeding type’. Metal sensitivity values, however, explained community effects in the field only weakly. Instead, the trait ‘feeding type’ was strongly related to metal exposure. The fraction of predators in a community can, thus, serve as an indicator for metal contamination in the field. Furthermore, several metrics reflecting exposure to chemical cocktails in the environment were compared using existing pesticide datasets. Exposure metrics based on the 5% fraction of species sensitivity distributions were found to perform best, however, closely followed by Toxic Unit metrics based on the most sensitive species of a community or Daphnia magna.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks