Refine
Document Type
- Doctoral Thesis (5) (remove)
Keywords
- 3D Modell Referenz Bildsynthese (1)
- Acceleration Structures (1)
- Analyse-durch-Synthese (1)
- Computer Graphics (1)
- Gamebased (1)
- Gamebasiertheit (1)
- Kamera Pose Tracking (1)
- Line Space (1)
- Merkmalsmanagement (1)
- Merkmalssynthese (1)
Institute
Virtual reality is a growing field of interest as it provides a particular intuitive way of user-interaction. However, there are still open technical issues regarding latency — the delay between interaction and display reaction — and the trade-off between visual quality and frame-rate of real-time graphics, especially when taking visual effects like specular and semi-transparent surfaces and volumes into account. One solution, a distributed rendering setup, is presented in this thesis, in which the image synthesis is divided into an accurate but costly physically based rendering thread with a low refresh rate and a fast reprojection thread to remain a responsive interactivity with a high frame-rate. Two novel reprojection techniques are proposed that cover reflections and refractions produced by surface ray-tracing as well as volumetric light transport generated by volume ray-marching. The introduced setup can enhance the VR experience within several domains. In this thesis, three innovative training applications have been realized to investigate the added value of virtual reality to the three learning stages of observation, interaction and collaboration. For each stage an interdisciplinary curriculum, currently taught with traditional media, was transferred to a VR setting in order to investigate how virtual reality is capable of providing a natural, flexible and efficient learning environment
Augmented reality (AR) applications typically extend the user's view of the real world with virtual objects.
In recent years, AR has gained increasing popularity and attention, which has led to improvements in the required technologies. AR has become available to almost everyone.
Researchers have made great progress towards the goal of believable AR, in which the real and virtual worlds are combined seamlessly.
They mainly focus on issues like tracking, display technologies and user interaction, and give little attention to visual and physical coherence when real and virtual objects are combined. For example, virtual objects should not only respond to the user's input; they should also interact with real objects. Generally, AR becomes more believable and realistic if virtual objects appear fixed or anchored in the real scene, appear indistinguishable from the real scene, and response to any changes within it.
This thesis examines on three challenges in the field of computer vision to meet the goal of a believable combined world in which virtual objects appear and behave like real objects.
Firstly, the thesis concentrates on the well-known tracking and registration problem. The tracking and registration challenge is discussed and an approach is presented to estimate the position and viewpoint of the user so that virtual objects appear fixed in the real world. Appearance-based line models, which keep only relevant edges for tracking purposes, enable absolute registration in the real world and provide robust tracking. On the one hand, there is no need to spend much time creating suitable models manually. On the other hand, the tracking can deal with changes within the object or the scene to be tracked. Experiments have shown that the use of appearance-based line models improves the robustness, accuracy and re-initialization speed of the tracking process.
Secondly, the thesis deals with the subject of reconstructing the surface of a real environment and presents an algorithm to optimize an ongoing surface reconstruction. A complete 3D surface reconstruction of the target scene
offers new possibilities for creating more realistic AR applications. Several interactions between real and virtual objects, such as collision and occlusions, can be handled with physical correctness. Whereas previous methods focused on improving surface reconstructions offline after a capturing step, the presented method de-noises, extends and fills holes during the capturing process. Thus, users can explore an unknown environment without any preparation tasks such as moving around and scanning the scene, and without having to deal with the underlying technology in advance. In experiments, the approach provided realistic results where known surfaces were extended and filled in plausibly for different surface types.
Finally, the thesis focuses on handling occlusions between the real and virtual worlds more realistically, by re-interpreting the occlusion challenge as an alpha matting problem. The presented method overcomes limitations in state-of-the-art methods by estimating a blending coefficient per pixel of the rendered virtual scene, instead of calculating only their visibility. In several experiments and comparisons with other methods, occlusion handling through alpha matting worked robustly and overcame limitations of low-cost sensor data; it also outperformed previous work in terms of quality, realism and practical applicability.
The method can deal with noisy depth data and yields realistic results in regions where foreground and background are not strictly separable (e.g. caused by fuzzy objects or motion blur).
Ray tracing acceleration through dedicated data structures has long been an important topic in computer graphics. In general, two different approaches are proposed: spatial and directional acceleration structures. The thesis at hand presents an innovative combined approach of these two areas, which enables a further acceleration of the tracing process of rays. State-of-the-art spatial data structures are used as base structures and enhanced by precomputed directional visibility information based on a sophisticated abstraction concept of shafts within an original structure, the Line Space.
In the course of the work, novel approaches for the precomputed visibility information are proposed: a binary value that indicates whether a shaft is empty or non-empty as well as a single candidate approximating the actual surface as a representative candidate. It is shown how the binary value is used in a simple but effective empty space skipping technique, which allows a performance gain in ray tracing of up to 40% compared to the pure base data structure, regardless of the spatial structure that is actually used. In addition, it is shown that this binary visibility information provides a fast technique for calculating soft shadows and ambient occlusion based on blocker approximations. Although the results contain a certain inaccuracy error, which is also presented and discussed, it is shown that a further tracing acceleration of up to 300% compared to the base structure is achieved. As an extension of this approach, the representative candidate precomputation is demonstrated, which is used to accelerate the indirect lighting computation, resulting in a significant performance gain at the expense of image errors. Finally, techniques based on two-stage structures and a usage heuristic are proposed and evaluated. These reduce memory consumption and approximation errors while maintaining the performance gain and also enabling further possibilities with object instancing and rigid transformations.
All performance and memory values as well as the approximation errors are measured, presented and discussed. Overall, the Line Space is shown to result in a considerate improvement in ray tracing performance at the cost of higher memory consumption and possible approximation errors. The presented findings thus demonstrate the capability of the combined approach and enable further possibilities for future work.
In the context of augmented reality we define tracking as a collection of methods to obtain the position and orientation (pose) of a user. By means of various displaying techniques, this ensures a correct visual overlay of graphical information onto the reality perceived. Precise results for calculation of the camera pose are gained by methods of image processing, usually analyzing the pixels of an image and extracing features, which can be recognized over the image sequence. However, these methods do not regard the process of image synthesis or at least in a very simplyfied way. In contrast, the class of model-based methods assumes a given 3D model of the observed scene. Based on the model data features can be identified to establish correspondences in the camera image. From these feature correspondences the camera pose is calculated. An interesting approach is the strategy of analysis-by-synthesis, regarding the computer graphics rendering process for extending the knowledge about the model by information from image synthesis and other environment variables.
In this thesis the components of a tracking system are identified and further it is analyzed, to what extend information about the model, the rendering process and the environment can contribute to the components for improvement of the tracking process using analysis-by-synthesis. In particular, by using knowledge as topological information, lighting or perspective, the feature synthesis and correspondence finding should lead to visually unambiguous features that can be predicted and evaluated to be suitable for stable tracking of the camera pose.
This thesis presents the analysis of gamebased touristic applications. In tourism, actions can only be motivated intrinsic. Thus, this thesis at first researches specific intrinsic motivation concepts. It shows how gamebased motivation can be produced on purpose and answers the question whether gamebased motivation can be transferred to non-gamebased applications.
Using these results, different touristic applications have been developed and evaluated.
All applications aimed to add value to the touristic experience. The applications are sorted by their mobility. There are completely mobile, completely stationary and hybrid systems in this work. There are different ways to add value which are presented in this work: Gamebased exploration, knowledge transfer and social interaction between tourists.
Finally, an authoring tool for gamebased touristic tours on smartphones is presented.