Refine
Document Type
- Bachelor Thesis (3)
- Master's Thesis (3)
- Diploma Thesis (2)
Keywords
- Augmented Reality (8) (remove)
Augmented reality is being present for many years. Through progress in technology smaller augmented reality glasses became possible. These new technologies allow many new ways of interaction and usage of augmented reality.
This thesis is about the Microsoft HoloLens and its possiblities for consumers and industry. In the context of this thesis a new interactive and augmented application to measure the possiblities and limitations of the Microsoft HoloLens has been developed. The scene is an assembly szenario with a step by step instruction of building with Lego bricks. The evaluation showed that the HoloLens can already be used to assist in assembling scenarios and offers some advantages over other methods, although the glasses still have some flaws.
In order to plan the interior of a room, various programs for computers,
smart phones or head-mounted displays are available. The transfer to the
real environment is a difficult task. Therefore an augmented reality approach
is developed to illustrate the planning in the real room. If several
people want to contribute their ideas, conventional systems require to
work on one device together. The aim of this master thesis is to design and
develop a collaborative spatial planning application in augmented reality.
The application is developed in Unity with ARCore and C#.
Augmented Reality has many areas of application. It can be used to simplify everyday life as well as working processes. However, since there are
many manufacturers that offer greatly varying systems, choosing the correct system according to application as well as cross-platform development are dfficult. This thesis attempts to develop an application which can be used to simulate Augmented Reality devices on Virtual Reality systems. This should simplify the processes of choosing a system as well as cross-platform
development.
Since the simulation will be designed to run on mobile devices, it should be possible to render high quality, realistic environments in advance, using a panoramic image. On a Virtual Reality device, they need to be displayed as a stereoscopic image. To achieve this, several methods are presented that can be used to perform this conversion. An editor will be created which will allow the creation of scenes, configuration of Augmented Reality devices and displaying them on a Virtual Reality system. For closing this thesis a test will be performed, to check the quality of the simulation as well as improvements that can be made.
Shadows add a level of realism to a rendered image. Furthermore, they support the user of an augmented reality application through the interactions of virtual objects. The reason for this is that shadows make it easier to judge the position and the size of a virtual object. In 1978, Lance Williams published the shadow mapping algorithm with the aim to render a shadow of objects in a virtual scene. This master thesis presents a modified shadow mapping approach that can additionally be used in Augmented/Mixed Reality applications. First of all the standard algorithm ist extended by a PCF-filter. This filter is used to handle the aliasing-problem on the edges of the shadow and also to soften the shadow. Phantom objects are necessary to be able to operate this approach in a Mixed Reality application. These objects simulate the position and the geometry of the real objects for the algorithm. The approach consists of three steps: First the camera image is drawn into the framebuffer. After that a shadow map, of the virtual objects only, is created. When rendering these objects shadow mapping creates the shadows of virtual objects onto other virtual objects and on themselves. Afterwards the phantom objects are rendered. The depth test is performed on the fragment shader. If a fragment lies in a shadowed region it will get the color of the shadow. However, if it is beeing lit its transpareny value will be set to 1 so that it will not be seen. By applying this procedure all shadows from the virtual objects onto the real objects will be drawn. The results show that the approach can be used in real time in Mixed Reality environments. Additionally a comparison with a modified version of a shadow volume algorithm that can also be used for Mixed Reality applications shows that the approach of this master thesis casts a more realistic shadow in a shorter period of time. All in all this approach increases the level of realism in augmented reality applications and it helps the user measure distances and sizes of the virtual objects more easily.
This Bachelor thesis illustrates the connection between the technologies Augmented and Virtual Reality and creates an expedient interdependency of the two forms of presentation. For this purpose, an application in the area of interior design has been implemented, where designing a room can be made more intuitive by using Augmented Reality, as it provides a realistic impression of the planned apartment with a Virtual Reality simulation. Based on the relevant knowledge, a project-concept has been drafted and realized by using several development systems. During a series of tests this implementation has been evaluated and subsequently optimized. The result confirms the assumption, that Augmented and Virtual Reality with their strengths can be combined to an evident solution. This thesis is relevant for computer science students as well as for people interested in innovative solutions.
Im Bereich Augmented Reality ist es von großer Bedeutung, dass virtuelle
Objekte möglichst realistisch in ein Kamerabild eingebettet werden. Nur
so ist es möglich, dem Nutzer eine immersive Erfahrung zu bieten. Dazu
gehört unter anderem, Verdeckung dieser Objekte korrekt zu behandeln.
Während schon verschiedene Ansätze existieren, dieses Verdeckungsproblem
zu beheben, wird in dieser Arbeit eine Lösung mittels Natural Image
Matting vorgestellt. Mit Hilfe einer Tiefenkamera wird das Kamerabild in
Vorder- und Hintergrund aufgeteilt und anschließend das virtuelle Objekt
im Bild platziert. Für Bereiche, in denen die Zugehörigkeit zu Vorder- oder
Hintergrund nicht eindeutig ist, wird anhand bekannter Pixel ein Transparenz-
Wert geschätzt. Es werden Methoden präsentiert, welche einen
Ablauf des Image Matting in Echtzeit ermöglichen. Zudem werden
Verbesserungsmöglichkeiten dieser Methoden präsentiert und gezeigt, dass
durch diese eine höhere Bildqualität für schwierige Szenen erreicht wird.
Today, augmented reality is becoming more and more important in several areas like industrial sectors, medicine, or tourism. This gain of importance can easily be explained by its powerful extension of real world content. Therefore, augmented realty became a way to explain and enhance the real world information. Yet, to create a system which can enhance a scene with additional information, the relation between the system and the real world must be known. In order to establish this relationship a commonly used method is optical tracking. The system calculates its relation to the real world from camera images. To do so, a reference which is known is needed in the scene to serve as an orientation. Today, this is mostly a 2D-marker or a 2D-texture. These are placed in the real world scenery to serve as a reference. But, this is an intrusion in the scene. That is why it is desirable that the system works without such an additional aid. An strategy without manipulating the scene is object-tracking. In this approach, any object from the scene can be used as a reference for the system. As an object is far more complex than a marker, it is harder for the system to establish its relationship with the real world. That is why most methods for 3D-object-tracking reduce the object by not using the whole object as reference. The focus of this thesis is to research how a whole object can be used as a reference in a way that either the system or the camera can be moved in any 360 degree angle around the object without loosing the relation to the real world. As a basis the augmented reality framework, the so called VisionLib, is used. Extensions to this system for 360 degree tracking are implemented in different ways and analyzed in the scope of this work. Also, the different extensions are compared. The best results were achieved by improving the reinitialization process. With this extension, current camera images of the scene are given to the system. With the hek of these images, the system can calculate the relation to the real world faster in case the relation went missing.
Augmented Reality ist eine neuartige, auf vielen Gebieten einsetzbare Technologie. Eines dieser Gebiete ist die Touristeninformation. Hier ermöglicht die AR dem Anwender eine schier endlose Fülle der verschiedensten Möglichkeiten. Mit Ihrer Hilfe kann der Benutzer nicht nur die Zeit bereisen, er kann auch Unsichtbares sehen. Doch stellt sich die Frage, ob die AR auch für weiterreichende Zwecke geeignet ist. Ist es möglich mit ihrer Hilfe Wissen nachhaltig zu vermitteln? Und wenn ja, wie kann dies geschehen? In althergebrachter Form von Texten und Bildern, oder auf interaktive und spielerische Weise? Was muß beachtet werden bei dem Versuch eine AR Anwendung für die Wissensübermittlung zu erstellen? Wie kann der Benutzer mit Ihr umgehen? Weiss der Benutzer später auch wirklich mehr? Die vorliegende Diplomarbeit geht diesen Fragen nach, indem sie zuerst der AR einen genaueren Blick widmet. Sie betrachtet die möglichen einsetzbaren Medien und gibt Vorschläge für interaktive Anwendungen, die mit Hilfe von AR ausgeführt werden. Zum Schluß untersucht sie anhand einer erstellten Beispielanwendung, ob der Benutzer mit Hilfe der AR etwas lernen und auch behalten kann.