Refine
Keywords
- Fractionation (1) (remove)
The sediments of surface waters are temporary or final depository of many chemical compounds, including trace metals and metalloids (metal(loid)s) from natural and anthropogenic sources. Whether they act as a source or sink of metal(loid)s depends strongly on the dynamics of the biogeochemical processes that take place at the sediment-water interface (SWI). Important information on biogeochemical processes as well as on the exposure, the fate and the transport of pollutants at the SWI can be obtained by determining chemical concentration profiles in the sediment pore water. A major challenge is to conduct experiments with a spatial resolution, which allows to adequately record existing gradients and to log all the parameters needed, to describe and better understand the complex processes at the SWIs. At the same time, it is from major importance to prevent the formation of any artifacts during sampling, which may occur due to the labile nature of the SWIs and the very steep biogeochemical gradients.
In this context, in the first part of this work, a system was developed and tested that enables the automated, minimal invasive sampling of sediment pore water of undisturbed or manipulated sediments while simultaneously recording parameters such as redox potential, oxygen content and pH value. In an incubation experiment the impact of acidification and mechanical disturbance (re-suspension) on the mobility of 13 metal(loid)s was investigated using a triple quadrupole inductively coupled plasma-mass spectrometry (ICP-QQQ-MS) multi-element approach. Most metals were released as consequence of sulfide weathering whereas mechanical disturbance had a major impact on the mobility of the oxide forming elements As, Mo, Sb, U and V. Additionally, options were demonstrated to address with the system the size fractionation of metal(loid)s in pore water samples and the speciation of As(III/V) and Sb(III/V).
In the second part, the focus, with a similar experimental design, was placed on the processes leading to the release of metal(loid)s. For this purpose, two incubation experiments with different oxygen supply were conducted in parallel. For the first time the nonmetals carbon, phosphorus and sulfur were analyzed simultaneous to 13 metal(loid)s in sediment pore water by ICP-QQQ-MS. Throughout the experiment metal(loid) size fractionation was monitored. It was confirmed that resuspension promotes the mobility of metalloids such as As, Sb and V, while the release of most metals was largely attributed to pyrite weathering. The colloidal (0.45-16 μm) contribution in terms of mobilization was only relevant for a few elements.
Finally, the sampling system was used as part of a new approach to sediment risk assessment. Undisturbed sediment cores from differently contaminated positions in the Trave estuary were examined, considering 16 metal(loid)s, the non-metals C, P and S and the ions NH4+, PO43- and SO42-. By the first in-depth comparison with in-situ dialysis-based pore water sampling the ability of the suction-based approach to represent field conditions was proven. The pore water studies together with supplementing resuspension experiments in bio-geochemical microcosms and sequential extraction identified the most “pristine” sediment of the study area as posing the greatest risk of metal(loid) release. However, the potentially released amounts per kg of sediment are only a few parts per thousand of the average daily loads of the Trave river.