Refine
Keywords
- Environmental samples (1) (remove)
Method development for the quantification of pharmaceuticals in aqueous environmental matrices
(2021)
As a consequence of the world population increase and the resulting water scarcity, water quality is the object of growing attention. In that context, organic anthropogenic molecules — often defined as micropollutants— represent a threat for water resources. Among them, pharmaceuticals are the object of particular concerns due to their permanent discharge, their increasing consumption and their effect-based structures. Pharmaceuticals are mainly introduced in the environment via wastewater treatment plants (WWTPs), along with their metabolites and the on-site formed transformation products (TPs). Once in the aquatic environment, they partition between the different environmental compartments in particular the aqueous phase, suspended particulate matter(SPM) and biota. In the last decades, pharmaceuticals have been widely investigated in the water phase. However, extreme polar pharmaceuticals have rarely been monitored due to the lack of robust analytical methods. Moreover, metabolites and TPs have seldom been included in routine analysis methods although their environmental relevance is proven. Furthermore, pharmaceuticals have been only sporadically investigated in SPM and biota and adequate multi-residue methods are lacking to obtain comprehensive results about their occurrence in these matrices. This thesis endeavors to cover these gaps of knowledge by the development of generic multi-residue methods for pharmaceuticals determination in the water phase, SPM and biota and to evaluate the occurrence and partition of pharmaceuticals into these compartments. For a complete overview, a particular focus was laid on extreme polar pharmaceuticals, pharmaceutical metabolites and TPs. In total, three innovative multi-residue methods were developed, they include analytes covering a broad range of physico-chemical properties. First, a reliable multi-residue method was developed for the analysis of extreme polar pharmaceuticals, metabolites and TPs dissolved in water. The selected analytes covered a significant range of elevated polarity and the method would be easily expendable to further analytes. This versatility could be achieved by the utilization of freeze-drying as sample preparation and zwitterionic hydrophilic interaction liquid chromatography (HILIC) in gradient elution mode. The suitability of HILIC chromatography to simultaneously quantify a large range of micropollutants in aqueous environmental samples was thoroughly studied. Several limitations were pointed out: a very complex and time-consuming method development, a very high sensitivity with regards to modification of the acetonitrile to water ratio in the eluent or the diluent and high positive matrix effects for certain analytes. However, these limitations can be overcome by the utilization of a precise protocol and appropriate labeled internal standards. They are overmatched by the benefits of HILIC which permits the chromatographic separation of extreme polar micropollutants. Investigation of environmental samples showed elevated concentrations of the analytes in the water phase. In particular, gabapentin, metformin, guanylurea and oxypurinol were measured at concentrations in the µg/L range in surface water. Subsequently, a reliable multi-residue method was established for the determination of 57 pharmaceuticals, 47 metabolites and TPs sorbed to SPM down to the low ng/g range. This method was conceived to cover a large range of polarity in particular with the inclusion of extreme polar pharmaceuticals. The extraction procedure was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed-phase LC-MS/MS and freeze-drying HILIC-MS/MS. Pharmaceutical sorption was examined using laboratory experiments. Derived distribution coefficients Kd varied by five orders of magnitude among the analytes and confirmed a high sorption potential for positively charged and nonpolar pharmaceuticals. The occurrence of pharmaceuticals in German rivers SPM was evaluated by the investigation of annual composite SPM samples taken at four sites at the river Rhine and one site at the river Saar between the years 2005 and 2015. It revealed the ubiquitous presence of pharmaceuticals sorbed to SPM in these rivers. In particular, positively charged analytes, even very polar and nonpolar pharmaceuticals showed appreciable concentrations. For many pharmaceuticals, a distinct correlation was observed between the annual quantities consumed in Germany and the concentrations measured in SPM. Studies of composite SPM spatial distribution permitted to get hints about specific industrial discharge by comparing the pollution pattern along the river. For the first time, these results showed the potential of SPM for the monitoring of positively charged and nonpolar pharmaceuticals in surface water. Finally, a reliable and generic multi residue method was developed to investigate 35 pharmaceuticals and 28 metabolites and TPs in fish plasma, fish liver and fish fillet. For this matrix, it was very challenging to develop an adequate clean-up allowing for the sufficient separation of the matrix disturbances from the analytes. In the final method, fish tissue extraction was performed by cell disruption followed by a non-discriminating clean-up based on silica gel solid-phase extraction(SPE) and restrictive access media (RAM) chromatography. Application of the developed method to the measurement of bream and carp tissues from German rivers revealed that even polar micropollutants such as pharmaceuticals are ubiquitously present in fish tissues. In total, 17 analytes were detected for the first time in fish tissues, including 10 metabolites/TPs. The importance of monitoring metabolites and TPs in fish tissues was confirmed with their detection at similar concentrations as their parents. Liver and fillet were shown to be appropriate for the monitoring of pharmaceuticals in fish, whereas plasma is more inconvenient due to very low concentrations and collection difficulties. Elevated concentrations of certain metabolites suggest possible formation of human metabolites in fish. Measured concentrations indicate a low bioaccumulation potential for pharmaceuticals in fish tissues.