Doctoral Thesis
Refine
Year of publication
Document Type
- Doctoral Thesis (475) (remove)
Language
- English (249)
- German (224)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Wirtschafts- und Verwaltungsinformatik (13)
Abstract The present work investigates the wetting characteristics of soils with regard to their dependence on environmental parameters such as water content (WC), pH, drying temperature and wetting temperature of wettable and repellent soils from two contrasting anthropogenic sites, the former sewage disposal field Berlin-Buch and the inner-city park Berlin-Tiergarten. The aim of this thesis is to deepen the understanding of processes and mechanisms leading to changes in soil water repellency. This helps to gain further insight into the behaviour of soil organic matter (SOM) and identifying ways to prevent or reduce the negative effects of soil water repellency (SWR). The first focus of this work is to determine whether chemical reactions are required for wetting repellent samples. This hypothesis was tested by time and temperature dependence of sessile drop spreading on wettable and repellent samples. Additionally, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to determine whether various drying regimes cause changes in the relative abundance of hydrophobic and hydrophilic functional groups in the outer layer of soil particles and whether these changes can be correlated with water content and the degree of SWR. Finally, by artificially altering the pH in dried samples applying acidic and alkaline reagents in a gaseous state, the influence of only pH on the degree of SWR was investigated separately from the influence of changes in moisture status. The investigation of the two locations Buch and Tiergarten, each exceptionally different in the nature of their respective wetting properties, leads to new insights in the variety of appearance of SWR. The results of temperature, water content and pH dependency of SWR on the two contrasting sites resulted in one respective hypothetical model of nature of repellency for each site which provides an explanation for most of the observations made in this and earlier studies: At the Tiergarten site, wetting characteristics are most likely determined by micelle-like arrangement of amphiphiles which depends on the concentration of water soluble amphiphilic substances, pH and ionic strength in soil solution. At low pH and at high ionic strength, repulsion forces between hydrophilic charged groups are minimized allowing their aggregation with outward orientated hydrophobic molecule moieties. At high pH and low ionic strength, higher repulsion forces between hydrophilic functional groups lead to an aggregation of hydrophobic groups during drying, which results in a layer with outward oriented hydrophilic moieties on soil organic matter surface leading to enhanced wettability. For samples from the Buch site, chemical reactions are necessary for the wetting process. The strong dependence of SWR on water content indicates that hydrolysis-condensation reactions are the controlling mechanisms. Since acid catalyzed hydrolysis is an equilibrium reaction dependent on water content, an excess of water favours hydrolysis leading to an increasing number of hydrophilic functional groups. In contrast, water deficiency favours condensation reactions leading to a reduction of hydrophilic functional groups and thus a reduction of wettability. The results of the present investigation and its comparison with earlier investigations clearly show that SWR is subject to numerous antagonistically and synergistically interacting environmental factors. The degree of influence, which a single factor exerts on SWR, is site-specific, e.g., it is dependent on special characteristics of mineral constituents and SOM which underlies the influence of climate, soil texture, topography, vegetation and the former and current use of the respective site.