Doctoral Thesis
Refine
Year of publication
Document Type
- Doctoral Thesis (475) (remove)
Language
- English (249)
- German (224)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Modellierung (4)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (35)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (22)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (13)
- Institut für Wirtschafts- und Verwaltungsinformatik (13)
Agriculture requires a sustainable intensification to feed the growing world population without exacer-bating soil degradation and threatening soil quality. Globally, plastic mulching (PM) is increasingly used to improve crop growth and yields and consequently agronomic productivity. However, recent literature reported also critical aspects of PM for soil quality and showed contradictory outcomes. This might result from the numerous applications of PM in different climates across various crops, soils and agri-cultural techniques. Thus, a closer look is necessary on how PM influences soil processes under certain climate and cultivation conditions to obtain a comprehensive understanding of its effects, which is im-portant to evaluate PM in terms of a sustainable agriculture.
The aim of this PhD thesis was to understand how multiannual PM influences soil properties and pro-cesses under the temperate, humid Central European cultivation conditions and to evaluate the resulting consequences for soil quality. I designed a three-year field study to investigate the influence of PM (black polyethylene, 50 μm) on microclimate, structural stability, soil organic matter (SOM) and the concentrations of selected fungicides and mycotoxins in three soil layers (0–10, 10–30 and 30–60 cm) compared to straw mulching (SM). Both mulching types were applied in a drip-irrigated ridge-furrow system in strawberry cultivation.
PM shifted the soil microclimate to higher soil temperatures and lower soil moistures. The higher soil temperature seems thus to be the key factor for the increased crop growth and yields under the present humid climate. The reduced soil moisture under PM indicated that under PM the impeded rainfall infil-tration had a stronger effect on the water balance than the reduced evaporation. This indicate an ineffi-cient rainwater use in contrast to arid climates. PM changed the water cycling in the ridges from down-ward directed water flows to lateral water flows from furrows to ridges. This reduced nitrogen leaching in the topsoil (0–10 cm) in the strawberry establishment period. The plastic mulches avoided aggregate breakdown due to rapid soil wetting and excess water during rainfalls and thus maintained a loose and stable soil structure in the surface soil, which prevents soil compaction and made soil less prone to erosion. PM changed carbon fluxes and transformation so that a larger total and more stable SOM was observed. Thus, the higher belowground biomass productivity under PM compensated the impeded aboveground biomass input and the temperature-induced SOM decomposition. However, SM increased the labile and total SOM in the topsoil after the first experiment year and promoted microbial growth due to the aboveground biomass incorporation. PM reduced fungicide entry into soil compared to SM and reduced consequently the fungal biomass reduction and the biosynthesis of the mycotoxin deoxyni-valenol. The modified microclimate under PM did not increase mycotoxin occurrence. In this context, PM poses no risk for an increased soil contamination, impairing soil quality. This PhD thesis demon-strated that the PM effects on soil can vary depending on time, season and soil depth, which emphasizes the importance to include soil depth and time in future studies.
Compared to semiarid and arid regions, the PM effects found in this PhD thesis were small, absent or in another way. I attributed this to the fact that PM under humid climate reduced instead of increased soil moisture and that SM had due to straw und strawberry canopy a similar ‘covering effect’ as PM. Thus, generalizing the PM effects on soil across different climates seems hardly possible as they differ in type and extent depending on climate. A differentiated consideration is hence necessary to evaluate the PM effects on soil quality. I conclude that PM under temperate, humid climate might contribute to reduce soil degradation (e.g., SOM depletion, erosion, nutrient leaching, soil compaction and soil contamina-tion), which sustains soil quality and helps to enable a sustainable agricultural intensification. However, further research is necessary (1) to support my findings on a larger scale, longer time periods and across various soil and crop types, (2) to address remaining open questions and (3) to develop optimization to overcome the critical aspects of PM (e.g. macro- and microplastic waste in soil, mulch disposal).
For software engineers, conceptually understanding the tools they are using in the context of their projects is a daily challenge and a prerequisite for complex tasks. Textual explanations and code examples serve as knowledge resources for understanding software languages and software technologies. This thesis describes research on integrating and interconnecting
existing knowledge resources, which can then be used to assist with understanding and comparing software languages and software technologies on a conceptual level. We consider the following broad research questions that we later refine: What knowledge resources can be systematically reused for recovering structured knowledge and how? What vocabulary already exists in literature that is used to express conceptual knowledge? How can we reuse the
online encyclopedia Wikipedia? How can we detect and report on instances of technology usage? How can we assure reproducibility as the central quality factor of any construction process for knowledge artifacts? As qualitative research, we describe methodologies to recover knowledge resources by i.) systematically studying literature, ii.) mining Wikipedia, iii.) mining available textual explanations and code examples of technology usage. The theoretical findings are backed by case studies. As research contributions, we have recovered i.) a reference semantics of vocabulary for describing software technology usage with an emphasis on software languages, ii.) an annotated corpus of Wikipedia articles on software languages, iii.) insights into technology usage on GitHub with regard to a catalog of pattern and iv.) megamodels of technology usage that are interconnected with existing textual explanations and code examples.
Enterprise Collaboration Systems (ECS) werden zunehmend als Kernkomponenten des digitalen Arbeitsplatzes in Unternehmen eingesetzt, die mit der Implementierung dieser neuen Softwaregattung jeweils unterschiedliche Ziele für die innerbetriebliche Zusammenarbeit verfolgen. Diese Ziele werden in der Praxis oftmals nicht eindeutig genug formuliert. Der Einsatz von traditionellen Controlling-Kennzahlen mit dem Schwerpunkt auf Termineinhaltung und Kosten sind zudem ungeeignet, um die Realisierung des individuellen Nutzens von ECS zu messen. Diese Forschungsarbeit beschreibt die Entwicklung und Anwendung des Benefits Scorecards for Collaboration Platforms in Enterprises (SCoPE) Frameworks, das als ein Rahmenwerk für die kennzahlengestützte Nutzenmessung von ECS dient und an dem Goal-Question-Metrics-Approach der NASA sowie der Balance Scorecard von Kaplan & Norton angelehnt ist. Die Ergebnisse tragen zu einem breiteren Verständnis der kennzahlenbasierten Nutzenanalyse für ECS in Organisationen bei. Das Benefits-SCoPE-Framework wurde in enger Zusammenarbeit mit Experten aus 16 Anwenderunternehmen im Rahmen der Initiative IndustryConnect entwickelt. In einem design-orientierten Ansatz wurde ein ausgewählter Methodenmix angewandt, inklusive Experteninterview, Fokusgruppe, Workshop und Card Sorting. Der von Anwenderunternehmen erwartete Nutzen des ECS wird in spezifische, durch Kennzahlen beantwortbare Fragestellungen umformuliert und fragmentiert. Insgesamt konnten so 313 nutzenorientierte Fragen von drei Anwenderunternehmen identifiziert werden. Die durchgeführte Kategorisierung der Fragen verdeutlicht zum einen das gemeinsame Verständnis der Unternehmen hinsichtlich der entscheidenden Faktoren für die Nutzenrealisierung von ECS und zum anderen die Nutzen-ziele, die die Unternehmen durch den Einsatz des ECS anvisieren. Die Entwicklung und Erhebung von Kennzahlen zur quantitativen Beantwortung von ausgewählten Fragestellungen wird mit funktions-fähigen Prototypen auf einer operativen Kollaborationsplattform demonstriert, die seit mehr als sieben Jahren im Einsatz ist und mehr als 5.000 registrierte Benutzer aufweist. Die Kennzahlenentwicklung, die Auswahl der Datenerhebungsmethode, die Durchführung der Messung sowie die Interpretation der Messergebnisse werden im Framework durch die Verwendung von Benefits Scorecards unterstützt. Die individuelle Orchestrierung mehrerer Benefits Scorecards repräsentiert die Struktur eines Ordnungssystems zur ECS-Nutzenanalyse in Anwenderunternehmen und verdeutlicht das Vorgehen zur Erhebung der äquivalenten Daten.
The ongoing loss of species is a global threat to biodiversity, affecting ecosystems worldwide. This also concerns arthropods such as insects and spiders, which are especially endangered in agricultural ecosystems. Here, one of the main causing factors is management intensification. In areas with a high proportion of traditionally managed grassland, extensive hay meadows that are cut only once per year can still hold high levels of biodiversity, but are threatened by conversion into highly productive silage grassland. The Westerwald mountain range, western Germany, is such a region. In this thesis, I compare the local diversity of bees, beetles, hoverflies, leafhoppers, and spiders of five grassland management regimes along a gradient of land-use intensity. These comprise naturally occurring grassland fallows, three types of traditionally managed hay meadows, and intensively used silage grassland. By using three different sampling methods, I recorded ground-dwelling, flower-visiting, and vegetation-dwelling species. The results show that in most cases species richness and diversity are highest on fallows, whereas variation among different managed grassland types is very low. Also, for most sampled taxa, fallows harbour the most distinct species assemblages, while that of other management regimes are largely overlapping. Management has the largest effect on species composition, whereas environmental parameters are of minor importance. Long-term grassland fallows seem to be highly valuable for arthropod conservation, even in a landscape with a low overall land-use intensity, providing structural heterogeneity. In conclusion, such fallows should be subsidized agri-environmental schemes, to preserve insect and spider diversity.
Invasive species play increasing roles worldwide. Invasions are considered successful when species establish and spread in their exotic range. Subsequently, dispersal is a major determinant of species’ range dynamics. Mermessus trilobatus, native to North America, has rapidly spread in Europe via aerial dispersal. Here we investigated the interplay of ecological and evolutionary processes behind its colonisation success.
First, we examined two possible ecological mechanisms. Similar to other invasive invertebrates, the colonisation success of Mermessus trilobatus might be related to human-induced habitat disturbance. Opposite to this expectation, our results showed that densities of Mermessus trilobatus decreased with soil disturbance in grasslands suggesting that its invasion success was not connected to a ruderal strategy. Further, invasive species often escape the ecological pressures from novel enemies in their exotic ranges. Unexpectedly, invasive Mermessus trilobatus was more sensitive to a native predator than native Erigone dentipalpis during our predator susceptibility trials. This indicates that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release.
The remaining three chapters of the thesis investigated the dispersal behaviour of this invasive species. Hitherto, studies of passive aerial dispersal used wind as the primary dispersal-initiating factor despite a recent demonstration of the effects of the atmospheric electric fields on spiders’ pre-dispersal behaviour. During our experiments, only the wind facilitated the flight, although electric fields induced pre-dispersal behaviour in spiders. Consequently, studies around passive aerial dispersal should control electric fields but use wind as a stimulating factor.
Rapidly expanding species might be disproportionately distributed in their exotic range, with an accumulation of dispersive genotypes at the leading edge of their range. Such imbalanced spatial segregation is possible when the dispersal behaviour of expanding species is heritable. Our results showed that the dispersal traits of Mermessus trilobatus were heritable through both parents and for both sexes with recessive inheritance of high dispersal ability in this species.
Following the heritability experiments, we documented an accelerated spread of Mermessus trilobatus in Europe and tested whether dispersal, reproduction or competing ability was at the source of this pattern. Our results showed that the accumulation of more mobile but not reproductive or competitive genotypes at the expansion front of this invasive species gave rise to an accelerated range expansion by more than 1350 km in under 45 years.
Invasive Mermessus trilobatus is inferior to native sympatric species with respect to competing ability (Eichenberger et al., 2009), disturbance tolerance and predation pressure. Nevertheless, the species successfully established in its exotic range and spread by accelerating its expansion rate. Rapid reproduction that balances the high ecological pressures might be the other potential mechanism behind its colonisation success in Europe and deserves further investigation.
Harvesting Season?
(2022)
Efforts to induce customers to buy groceries through the Internet have existed for around twenty years. Early on, the market structures of the digital grocery trade were still strongly fragmented and poorly coordinated. Due to the technological advancement in the past decade, the digital purchase of groceries has become more attractive. The adoption rate of these services varies greatly between different regions. In Germany in particular, the digital grocery trade is stagnating at a comparatively low level. In this regard, this dissertation analyzes both the retail-side market structures and the expectations and obstacles of German consumers.
The year 2020 connotes a turning point for the online grocery trade, as daily routines such as grocery shopping were subject to strict regulations imparted at a governmental level in order to reduce COVID-19 infections. At the same time, despite this opportunity, the digital grocery trade has not yet established itself nationwide in Germany. This can be attributed to a lack of investments, but also to inadequate digitization measures. A stronger synchronization between the digital and stationary offer, better integration of digital food services at a regional level as well as adapted, target group-appropriate digital solutions for the efficient breakdown of usage barriers will benefit service usage. The importance of stable food chains and distribution channels was illustrated by the COVID-19 pandemic. Further research should help to develop the digital food trade into a stable and sustainable supplementation of the stationary store.
Die Arbeit stellt eine Systematisierung der wissenschaftsphilosophischen Gedanken der klassischen Pragmatisten (Charles S. Peirce, William James, John Dewey) dar.
Deren Erfahrungstheorie sowie die Bestimmung des Verhältnisses von Theorie und Praxis bilden die Grundlage einer holistischen Wissenschaftsphilosophie.
Die exemplarische Anwendung auf klassische wissenschaftstheoretische Fragestellungen zeigt die Aktualität des Ansatzes.
Today’s agriculture heavily relies on pesticides to manage diverse pests and maximise crop yields. Despite elaborate regulation of pesticide use based on a complex environmental risk assessment (ERA) scheme, the widespread use of these biologically active compounds has been shown to be a threat to the environment. For surface waters, pesticide exposure has been observed to exceed safe concentration levels and negatively impact stream ecology leading to the question whether current ERA schemes ensure a sustainable use of pesticides. To answer this, the large-scale “Kleingewässer-Monitoring” (KgM) assessed the occurrence of pesticides and related effects in 124 streams throughout Germany, Central Europe, in 2018 and 2019.
Based on five scientific publications originating from the KgM, this thesis evaluated pesticide exposure in streams, ecological effects and the regulatory implications. More than 1,000 water samples were analysed for over 100 pesticide analytes to characterise occurrence patterns (publication 1). Measured concentrations and effects were used to validate the exposure and effect concentrations predicted in the ERA (publication 2). By jointly analysing real-world pesticide application data and measured pesticide mixtures in streams, the disregard of environmental pesticide mixtures in the ERA was evaluated (publication 3). The toxic potential of mixtures in stream water was additionally investigated using suspect screening for 395 chemicals and a battery of in-vitro bioassays (publication 4). Finally, the results from the KgM stream monitoring were used to assess the capability to identify pesticide risks in governmental monitoring programmes (publication 5).
The results of this thesis reveal the widespread occurrence of pesticides in non-target stream ecosystems. The water samples contained a variety of pesticides occurring in complex mixtures predominantly in short-term peaks after rainfall events (publications 1 & 4). Respective pesticide concentration maxima were linked to declines in vulnerable invertebrate species and exceeded regulatory acceptable concentrations in about 80% of agricultural streams, while these thresholds were still estimated partly insufficient to protect the invertebrate community (publication 2). The co-occurrence of pesticides in streams led to a risk underestimated in the single substance-oriented ERA by a factor of about 3.2 in realistic worst-case scenarios, which is further exacerbated by a high frequency at which non-target organism are exposed to pesticides (publication 3). Stream water samples taken after rainfall caused distinct effects in bioassays which were only explainable to a minor extent by the many analytes, indicating the relevance of unknown chemical or biological mixture components (publication 4). Finally, the regulatory monitoring of surface waters under the Water Framework Directive (WFD) was found to significantly underestimate pesticide risks, as about three quarters of critical pesticides and more than half of streams at risk were overlooked (publication 5).
Essentially, this thesis involves a new level of validation of the ERA of pesticides in aquatic ecosystems by assessing pesticide occurrence and environmental impacts at a scale so far unique. The overall results demonstrate that the current agricultural use of pesticides leads to significant impacts on stream ecology that go beyond the level tolerated under the ERA. This thesis identified the underestimation of pesticide exposure, the potential insufficiency of regulatory thresholds and the general inertia of the authorisation process as the main causes why the ERA fails to meet its objectives. To achieve a sustainable use of pesticides, the thesis proposes substantial refinements of the ERA. Adequate monitoring programmes such as the KgM, which go beyond current government monitoring efforts, will continue to be needed to keep pesticide regulators constantly informed of the validity of their prospective ERA, which will always be subject to uncertainty.
Eine Ursache des Insektenrückgangs ist die Abnahme der für Arthropoden wichtigen Lebensräume. Der kleinstrukturierte Obstanbau als Dauerkultur mit vielfältigen Strukturen (Bäume, Grünland, offener Boden) kann als Refugium wirken. Gerade Dauerkulturen, welche über viele Jahre bestehen bleiben, können einen großen ökologischen Wert für Insekten und Spinnentiere darstellen, wenn die negativen Einflüsse der Bewirtschaftung durch gezielte Maßnahmen minimiert werden. Im Gegensatz zu den gut untersuchten Streuobstwiesen liegen bisher nur wenige oder ungenaue Daten über die Arthropodenfauna in Erwerbsobstanlagen vor. Ziele dieser Arbeit sind eine genauere Erfassung der Arthropodenfauna in Erwerbsobstanlagen, Benennung der Einflussfaktoren und Erarbeitung einer indikatorgestützten Bewertungsmethode mit Entwicklung von Maßnahmen zur Förderung der Biodiversität. Es wurde eine intensive Erfassung der Insekten und Spinnentiere auf Basis von Individuenzahlen, Verteilung der Tiere auf Großgruppen, Artenzahlen der Käfer (inkl. Rote Liste) und Wanzen, deren Diversität und der sie beeinflussenden Faktoren auf vier Erwerbsobstflächen und einer Streuobstwiese als Referenzfläche in der Gemeinde Zornheim (Rheinland-Pfalz) untersucht. Mittels des erarbeiteten Bewertungsbogens wurden die Auswirkungen der fünf Faktorenkomplexe: Sonderstrukturen, Anlagenstruktur, Beschattung, Mahdregime und Einsatz von Pflanzenschutzmitteln auf die Arthropodenfauna erhoben und die auf der Fläche zu erwartende Biodiversität ermittelt. Die visuelle Darstellung der Einflussfaktoren mit Netzdiagrammen zeigt biodiversitätsbeeinträchtigende Faktoren und ermöglicht so Empfehlungen zur Aufwertung der Biodiversität. Die Bewertungsmethode kann nach Verifizierung im Rahmen von erfolgsorientierten Agrarumwelt- und Klimamaßnahmen (AUKM), zur Anerkennung von Kompensationsmaßnahmen (z.B. PIK) und zur Ermittlung des ökologischen Wertes (Ökosystemdienstleistung) von Obstanlagen genutzt werden. In modifizierter Form könnte es ebenfalls im Bereich der Flächenbewertung in Landschafts- und Bauleitplanung eingesetzt werden.
Social media provides a powerful way for people to share opinions and sentiments about a specific topic, allowing others to benefit from these thoughts and feelings. This procedure generates a huge amount of unstructured data, such as texts, images, and references that are constantly increasing through daily comments to related discussions. However, the vast amount of unstructured data presents risks to the information-extraction process, and so decision making becomes highly challenging. This is because data overload may cause the loss of useful data due to its inappropriate presentation and its accumulation. To this extent, this thesis contributed to the field of analyzing and detecting feelings in images and texts. And that by extracting the feelings and opinions hidden in a huge collection of image data and texts on social networks After that, these feelings are classified into positive, negative, or neutral, according to the features of the classified data. The process of extracting these feelings greatly helps in decision-making processes on various topics as will be explained in the first chapter of the thesis. A system has been built that can classify the feelings inherent in the images and texts on social media sites, such as people’s opinions about products and companies, personal posts, and general messages. This thesis begins by introducing a new method of reducing the dimension of text data based on data-mining approaches and then examines the sentiment based on neural and deep neural network classification algorithms. Subsequently, in contrast to sentiment analysis research in text datasets, we examine sentiment expression and polarity classification within and across image datasets by building deep neural networks based on the attention mechanism.