Automatische Klassifikation von hämatopoetischen Zellen für ein computer-assistiertes Mikroskopiesystem

  • Die zytologische Untersuchung des Knochenmarks dient der Abklärung von Abweichungen des Differentialblutbildausstriches, zur Ursachenbestimmung bei Blutarmut (Anämie), dem Ausschluss eines Knochenmarkbefalls bei Lymphknotenvergrößerungen (Lymphomen) und wird zudem bei Verdacht auf Leukämie durchgeführt. Selbst für erfahrene Hämatologen ist die manuelle Klassifikation von Knochenmarkzellen zeitaufwändig, fehleranfällig und subjektiv. Aus diesem Grund wurden im Rahmen dieser Arbeit neue Methoden der Bildverarbeitung und Mustererkennung für eine automatische Klassifikation von hämatopoetischen Zellen samt Vorverarbeitung für ein computer-assistiertes Mikroskopiesystem entwickelt, welche anhand einer einzigartig großen Referenzdatenbank evaluiert und ausgewertet wurden. Die vorgeschlagenen Bildanalyseverfahren für Knochenmarkpräparate, welche insbesondere die Detektion der Ausstriche, die Bestimmung von relevanten Regionen, die Lokalisierung und Segmentierung von einzelnen Zellen sowie die Merkmalsextraktion und Klassifikation automatisieren, liefern die Basis für das weltweit erste System zur automatischen, morphologischen Analyse von Knochenmarkpräparaten für die Leukämiediagnose und stellen daher einen wichtigen Beitrag für eine bessere und effizientere Patientenversorgung in der Zukunft dar.
  • The cytological examination of bone marrow serves as clarification of variations in blood smears. It is also used for the clarification of anemia, as exclusion of bone marrow affection at lymphoma and at suspicion of leukemia. The morphological evaluation of hematopoietic cells is the basis for the creation of the diagnosis and for decision support for further diagnostics. Even for experienced hematologists the manual classification of hematopoietic cells is time-consuming, error-prone and subjective. For this reason new methods in the field of image processing and pattern recognition for the automatic classification including preprocessing steps are developed for a computer-assisted microscopy system. These methods are evaluated by means of a huge reference database. The proposed image analysis procedures comprise methods for the automated detection of smears, for the determination of relevant regions, for the localization and segmentation of single hematopoietic cells as well as for the feature extraction and classification task. These methods provide the basis for the first system for the automated, morphological analysis of bone marrow aspirates for leukemia diagnosis and are therefore a major contribution for a better and more efficient patient care in the future.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sebastian Krappe
URN:urn:nbn:de:kola-17515
Referee:Dietrich Paulus
Document Type:Doctoral Thesis
Language:German
Date of completion:2018/11/06
Date of publication:2018/11/07
Publishing institution:Universität Koblenz-Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Date of final exam:2018/10/31
Release Date:2018/11/07
Tag:Bildanalyse; Bildverarbeitung; Klassifikation; Medizinische Bildverarbeitung; Mikroskopie; Mustererkennung; Segmentierung
Deep Learning; Machine Learning
Number of pages:183
Institutes:Fachbereich 4 / Institut für Computervisualistik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG