Refine
Systemic neonicotinoids are one of the most widely used insecticide classes worldwide. In addition to their use in agriculture, they are increasingly applied on forest trees as a protective measure against insect pests. However, senescent leaves containing neonicotinoids might, inter alia during autumn leaf fall, enter nearby streams. There, the hydrophilic neonicotinoids may be remobilized from leaves to water resulting in waterborne exposure of aquatic non-target organisms. Despite the insensitivity of the standard test species Daphnia magna (Crustacea, Cladocera) toward neonicotinoids, a potential risk for aquatic organisms is evident as many other aquatic invertebrates (in particular insects and amphipods) display adverse effects when exposed to neonicotinoids in the ng/L- to low µg/L-range. In addition to waterborne exposure, in particular leaf-shredding invertebrates (= shredders) might be adversely affected by the introduction of neonicotinoid-contaminated leaves into the aquatic environment since they heavily rely on leaf litter as food source. However, dietary neonicotinoid exposure of aquatic shredders has hardly received any attention from researchers and is not considered during aquatic environmental risk assessment. The primary aim of this thesis is, therefore, (1) to characterize foliar neonicotinoid residues and exposure pathways relevant for aquatic shredders, (2) to investigate ecotoxicological effects of waterborne and dietary exposure on two model shredders, namely Gammarus fossarum (Crustacea, Amphipoda) and Chaetopteryx villosa (Insecta, Trichoptera), and (3) to identify biotic and abiotic factors potentially modulating exposure under field conditions.
During the course of this thesis, ecotoxicologically relevant foliar residues of the neonicotinoids imidacloprid, thiacloprid and acetamiprid were quantified in black alder trees treated at field relevant levels. A worst-case model – developed to simulate imidacloprid water concentrations resulting from an input of contaminated leaves into a stream – predicted only low aqueous imidacloprid concentrations (i.e., ng/L-range). However, the model identified dietary uptake as an additional exposure pathway relevant for shredders up to a few days after the leaves’ introduction into the stream. When test organisms were simultaneously exposed (= combined exposure) to neonicotinoids leaching from leaves into the water and via the consumption of contaminated leaves, adverse effects exceeded those observed under waterborne exposure alone. When exposure pathways were separated using a flow-through system, dietary exposure towards thiacloprid-contaminated leaves caused similar sublethal adverse effects in G. fossarum as observed under waterborne exposure. Moreover, the effect sizes observed under combined exposure were largely predictable using the reference model “independent action”, which assumes different molecular target sites to be affected. Dietary toxicity for shredders might, however, be reduced under field conditions since UV-induced photodegradation and leaching decreased imidacloprid residues in leaves and thereby the toxicity for G. fossarum. In contrast, both shredders were found unable to actively avoid dietary exposure. This thesis thus recommends considering dietary exposure towards systemic insecticides, such as neonicotinoids, already during their registration to safeguard aquatic shredders, associated ecosystem functions (e.g., leaf litter breakdown) and ultimately ecosystem integrity.