Refine
Document Type
- Bachelor Thesis (1)
- Master's Thesis (1)
Keywords
- 3D-Scan (1)
- BRDF (1)
- Computergrafik (1)
- Computervisualistik (1)
- Global Illumination (1)
- Gonioreflectometer (1)
- Line Space (1)
- Path Tracing (1)
This thesis presents a novel technique in computer graphics to simulate realtime
global illumination using path tracing. Path tracing is done with compute shaders on the graphics card (GPU) to perform rendering in a highly parallelized manner. To improve the overall performance of tracing rays, the Line Space is used as an acceleration data structure in different variations, resulting in better
empty space skipping. The Line Space saves scene information based on a previous voxelization in direction-dependent shafts and is generated and traversed on the GPU. With this procedure, indirect lighting and soft shadows can be computed in a physically correct way. Furthermore, using the Line Space, path tracing can be performed mostly independent of the complexity of the scene geometry with over 100 frames per second, which is truly real-time and much faster than using a comparable voxel grid. The image quality is not affected negatively by this technique and the shadow quality is in most cases much better compared to shadow-mapping.
A gonioreflectometer is a device to measure the reflection properties of arbitrary materials. In this work, such an apparatus is being built from easily obtainable parts. Therefore three stepper-motors and 809 light-emitting diodes are controlled by an Arduino microcontroller. RGB-images are captured with an industrial camera which serve as refelction data. Furthermore, a control software with several capture programs and a renderer for displaying the measured materials are implemented. These allow capturing and rendering entire bidirectional reflection distribution functions (BRDFs) by which also complex anisotropic material properties can be represented. Although the quality of the results has some artifacts due to shadows of the camera, these artifacts can be largely removed by using special algorithms like inpainting. In addition, the goniorefelctometer is applied to other use cases. One can perform 3D scans, light field capturing and light staging without altering the construction. The quality of these processes also meet the expectations in a positive way. Thus, the gonioreflectometer built in this work can be seen as a widely applicable and economical alternative to other publications.