Refine
Document Type
- Diploma Thesis (1)
- Study Thesis (1)
Keywords
- Automatisches Beweisverfahren (1)
- Computational logic (1)
- E-KRHyper (1)
- Heuristiken (1)
- Klausellogik (1)
- Prädikatenlogik (1)
- Tableau <Logik> (1)
Institute
- Fachbereich 4 (1)
- Institut für Informatik (1)
In dieser Ausarbeitung beschreibe ich die Ergebnisse meiner Untersuchungen zur Erweiterung des LogAnswer-Systemsmit nutzerspezifischen Profilinformationen. LogAnswer ist ein natürlichsprachliches open-domain Frage-Antwort-System. Das heißt: es beantwortet Fragen zu beliebigen Themen und liefert dabei konkrete (möglichst knappe und korrekte) Antworten zurück. Das System wird im Rahmen eines Gemeinschaftsprojekts der Arbeitsgruppe für künstliche Intelligenz von Professor Ulrich Furbach an der Universität Koblenz-Landau und der Arbeitsgruppe Intelligent Information and Communication Systems (IICS) von Professor Hermann Helbig an der Fernuniversität Hagen entwickelt. Die Motivation meiner Arbeit war die Idee, dass der Prozess der Antwortfindung optimiert werden kann, wenn das Themengebiet, auf das die Frage abzielt, im Vorhinein bestimmt werden kann. Dazu versuchte ich im Rahmen meiner Arbeit die Interessensgebiete von Nutzern basierend auf Profilinformationen zu bestimmen. Das Semantic Desktop System NEPOMUK wurde verwendet um diese Profilinformationen zu erhalten. NEPOMUK wird verwendet um alle Daten, Dokumente und Informationen, die ein Nutzer auf seinem Rechner hat zu strukturieren. Dazu nutzt das System ein sogenanntes Personal Information Model (PIMO) in Form einer Ontologie. Diese Ontologie enthält unter anderem eine Klasse "Topic", welche die wichtigste Grundlage für das Erstellen der in meiner Arbeit verwendeten Nutzerprofile bildete. Konkret wurde die RDF-Anfragesprache SPARQL verwendet, um eine Liste aller für den Nutzer relevanten Themen aus der Ontologie zu filtern. Die zentrale Idee meiner Arbeit war es nun diese Profilinformationen zur Optimierung des Ranking von Antwortkandidaten einzusetzen. In LogAnswer werden zu jeder gestellten Frage bis zu 200 potentiell relevante Textstellen aus der deutschen Wikipedia extrahiert. Diese Textstellen werden auf Basis von Eigenschaften (wie z.B. lexikalische Übereinstimmungen zwischen Frage und Textstelle) geordnet, da innerhalb des zur Verfügung stehenden Zeitlimits nicht alle Kandidaten bearbeitet werden können.
Mein Ansatz verfolgte das Ziel, diesen Algorithmus durch Nutzerprofile so zu erweitern, dass Antwortkandidaten, welche für den Benutzer relevante Informationen enthalten, höher in der Rangfolge eingeordnet werden. Zur Umsetzung dieser Idee musste eine Methode gefunden werden, um zu bestimmen ob ein Antwortkandidat mit dem Profil übereinstimmt. Da sich die in einer Textstelle enthaltenen Informationen in den meisten Fällen auf das übergeordnete Thema des Artikels beziehen, ohne den Namen des Artikels explizit zu erwähnen, wurde in meiner Implementierung der Artikelname betrachtet, um zu ermitteln, zu welchem Themengebiet die Textstelle Informationen liefert. Als zusätzliches Hilfsmittel wurde außerdem die DBpedia-Ontologie eingesetzt, welche die Informationen der Wikipedia strukturiert im RDF Format enthält. Mit Hilfe dieser Ontologie war es möglich, jeden Artikel in Kategorien einzuordnen, die dann mit den im Profil enthaltenen Stichworten verglichen wurden. Zur Untersuchung der Auswirkungen des Ansatzes auf das Ranking-Verfahren wurden mehrere Testläufe mit je 200 Testfragen durchgeführt. Die erste Testmenge bestand aus zufällig ausgewählten Fragen, die mit meinem eigenen Nutzerprofil getestet wurden. Dieser Testlauf lieferte kaum nutzbare Ergebnisse, da nur bei 29 der getesteten Fragen überhaupt ein Antwortkandidat mit dem Profil in Verbindung gebracht werden konnte. Außerdem konnte eine potentielle Verbesserung der Ergebnisse nur bei einer dieser 29 Fragen festgestellt werden, was zu der Schlussfolgerung führte, dass der Einsatz von Profildaten nicht für Anwendungsfälle geeignet ist, in denen die Fragen keine Korrelation mit dem genutzten Profil aufweisen.
Da die Grundannahme meiner Arbeit war, dass Nutzer in erster Linie Fragen zu den Interessensgebieten stellen, welche sich aus ihrem Profil ableiten lassen, sollten die weiteren Testläufe genau diesen Fall beleuchten. Dazu wurden 200 Testfragen aus dem Bereich Sport ausgewählt und mit einem Profil getestet, welches Stichworte zu unterschiedlichen Sportarten enthielt. Die Tests mit den Sportfragen waren wesentlich aussagekräftiger. Auch hier deuteten die Ergebnisse darauf hin, dass der Ansatz kein großes Potential zur Verbesserung des Rankings hat. Eine genauere Betrachtung einiger ausgewählter Beispiele zeigte allerdings, dass die Integration von Profildaten für bestimmte Anwendungsfälle, wie z.B. offene Fragen für die es mehr als eine korrekte Antwort gibt, durchaus zu einer Verbesserung der Ergebnisse führen kann. Außerdem wurde festgestellt, dass viele der schlechten Ergebnisse auf Inkosistenzen in der DBpedia-Ontologie und grundsätzliche Probleme im Umgang mit Wissensbasen in natürlicher Sprache beruhen.
Die Schlussfolgerung meiner Arbeit ist, dass der in dieser Arbeit vorgestellte Ansatz zur Integration von Profilinformationen für den aktuellen Anwendungsfall von LogAnswer nicht geeignet ist, da vor allem Faktenwissen aus sehr unterschiedlichen Domänen abgefragt wird und offene Fragen nur einen geringen Anteil ausmachen.
Diese Arbeit behandelt verschiedene Ansätze zur Ermittlung einer Heuristik, welche zur Bestimmung einer optimalen Konfiguration des Theorembeweisers E-KRHyper eingesetzt werden soll. Es wird erläutert, wie der Beweiser durch eine angepasste Voreinstellung optimiert werden kann und die erarbeiteten Ansätze zur Ermittlung dieser Voreinstellung werden vorgestellt. Anhand der erzielten Ergebnisse werden die Ansätze anschließend bewertet und für eines der vorgestellten Verfahren wird außerdem eine Idee zur Implementierung vorgestellt.