Refine
Keywords
The industry standard Decision Model and Notation (DMN) has enabled a new way for the formalization of business rules since 2015. Here, rules are modeled in so-called decision tables, which are defined by input columns and output columns. Furthermore, decisions are arranged in a graph-like structure (DRD level), which creates dependencies between them. With a given input, the decisions now can be requested by appropriate systems. Thereby, activated rules produce output for future use. However, modeling mistakes produces erroneous models, which can occur in the decision tables as well as at the DRD level. According to the Design Science Research Methodology, this thesis introduces an implementation of a verification prototype for the detection and resolution of these errors while the modeling phase. Therefore, presented basics provide the needed theoretical foundation for the development of the tool. This thesis further presents the architecture of the tool and the implemented verification capabilities. Finally, the created prototype is evaluated.
The application of artificial intelligences on digital games became more and more successful in recent years. A drawback is, that they need lots of computing power to achieve good results, the more complex the game, the more computing power is needed. In this thesis a strategy learning-system is implemented, which is based on crowd-learned heuristics. The heuristics are given in a wiki. The research is done according to the Design Science Research Methodology. The implemented system is allied to the game Dominion. To do this, an ontology for Dominion is designed. A mapping language is defined and implemented in the system, which allows the mapping of information in the wiki to an ontology. Furthermore, metrics to rate the found strategies are defined. Using the system, users can enter a mapping for the information transfer and apply it. They can also select cards from Dominion, for which the system determines and rates strategies. Finally, the system is evaluated by Dominion-players by rating the strategies, which are found by the system, and the defined metrics.
Business Process Querying (BPQ) is a discipline in the field of Business Process Man- agement which helps experts to understand existing process models and accelerates the development of new ones. Its queries can fetch and merge these models, answer questions regarding the underlying process, and conduct compliance checking in return. Many languages have been deployed in this discipline but two language types are dominant: Logic-based languages use temporal logic to verify models as finite state machines whereas graph-based languages use pattern matching to retrieve subgraphs of model graphs directly. This thesis aims to map the features of both language types to features of the other to identify strengths and weaknesses. Exemplarily, the features of Computational Tree Logic (CTL) and The Diagramed Modeling Language (DMQL) are mapped to one another. CTL explores the valid state space and thus is better for behavioral querying. Lacking certain structural features and counting mechanisms it is not appropriate to query structural properties. In contrast, DMQL issues structural queries and its patterns can reconstruct any CTL formula. However, they do not always achieve exactly the same semantic: Patterns treat conditional flow as sequential flow by ignoring its conditions. As a result, retrieved mappings are invalid process execution sequences, i.e. false positives, in certain scenarios. DMQL can be used for behavioral querying if these are absent or acceptable. In conclusion, both language types have strengths and are specialized for different BPQ use cases but in certain scenarios graph-based languages can be applied to both. Integrating the evaluation of conditions would remove the need for logic-based languages in BPQ completely.
Advanced Auditing of Inconsistencies in Declarative Process Models using Clustering Algorithms
(2021)
To have a compliant business process of an organization, it is essential to ensure a onsistent process. The measure of checking if a process is consistent or not depends on the business rules of a process. If the process adheres to these business rules, then the process is compliant and efficient. For huge processes, this is quite a challenge. Having an inconsistency in a process can yield very quickly to a non-functional process, and that’s a severe problem for organizations. This thesis presents a novel auditing approach for handling inconsistencies from a post-execution perspective. The tool identifies the run-time inconsistencies and visualizes them in heatmaps. These plots aim to help modelers observe the most problematic constraints and help them make the right remodeling decisions. The modelers assisted with many variables can be set in the tool to see a different representation of heatmaps that help grasp all the perspectives of the problem. The heatmap sort and shows the run-time inconsistency patterns, so that modeler can decide which constraints are highly problematic and should address a re-model. The tool can be applied to real-life data sets in a reasonable run-time.
The status of Business Process Management (BPM) recommender systems is not quite clear as research states. The use of recommenders familiarized itself with the world during the rise of technological evolution in the past decade.Ever since then, several BPM recommender systems came about. However, not a lot of research is conducted in this field. It is not well known to what broad are the technologies used and how are they used. Moreover, this master’s thesis aims at surveying the BPM recommender systems existing. Building on this, the recommendations come in different shapes. They can be positionbased where an element is to be placed at an element’s front, back or to autocomplete a missing link. On the other hand, Recommendations can be textual, to fill the labels of the elements. Furthermore, the literature review for BPM recommender systems took place under the guides of a literature review framework. The framework suggests 5stages of consecutive stages for this sake. The first stage is defining a scope for the research. Secondly, conceptualizing the topic by choosing key terms for literature research. After that in the third stage, comes the research stage.As for the fourth stage, it suggests choosing analysis features over which the literature is to be synthesized and compared. Finally, it recommends defining the research agenda to describe the reason for the literature review. By invoking the mentioned methodology, this master’s thesis surveyed 18 BPM recommender systems. It was found as a result of the survey that there
are not many different technologies for implementing the recommenders. It was also found that the majority of the recommenders suggest nodes that are yet to come in the model, which is called forward recommending. Also, one of the results of the survey indicated the scarce use of textual recommendations to BPM labels. Finally, 18 recommenders are considered less than excepted for a developing field therefore as a result, the survey found a shortage in the number of BPM recommender systems. The results indicate several shortages in several aspects in the field of BPM recommender systems. On this basis, this master’s thesis recommends the future work on it the results.
Recently the workflow control as well as compliance analysis of the Enterprise Resource Planning systems are of a high demand. In this direction, this thesis presents the potential of developing a Workflow Management System upon a large Enterprise Resource Planning system by involving business rule extraction, business process discovery, design of the process, integration and compliance analysis of the system. Towards this, usability, limitations and challenges of every applied approach are deeply explained in the case of an existing system named SHD ECORO.
Business rules have become an important tool to warrant compliance at their business processes. But the collection of these business rules can have various conflicting elements. This can lead to a violation of the compliance to be achieved. This conflicting elements are therefore a kind of inconsistencies, or quasi incon- sistencies in the business rule base. The target for this thesis is to investigate how those quasi inconsistencies in business rules can be detected and analyzed. To this aim, we develop a comprehensive library which allows to apply results from the scientific field of inconsistency measurement to business rule formalisms that are actually used in practice.
This thesis explores the possibilities of probabilistic process modelling for the Computer Supported Cooperative Work (CSCW) systems in order to predict the behaviour of the users present in the CSCW system. Toward this objective applicability, advantages, limitations and challenges of probabilistic modelling are excavated in context of CSCW systems. Finally, as a primary goal seven models are created and examined to show the feasibilities of probabilistic process discovery and predictions of the users behaviour in CSCW systems.