Social networks are ubiquitous structures that we generate and enrich every-day while connecting with people through social media platforms, emails, and any other type of interaction. While these structures are intangible to us, they carry important information. For instance, the political leaning of our friends can be a proxy to identify our own political preferences. Similarly, the credit score of our friends can be decisive in the approval or rejection of our own loans. This explanatory power is being leveraged in public policy, business decision-making and scientific research because it helps machine learning techniques to make accurate predictions. However, these generalizations often benefit the majority of people who shape the general structure of the network, and put in disadvantage under-represented groups by limiting their resources and opportunities. Therefore it is crucial to first understand how social networks form to then verify to what extent their mechanisms of edge formation contribute to reinforce social inequalities in machine learning algorithms.
To this end, in the first part of this thesis, I propose HopRank and Janus two methods to characterize the mechanisms of edge formation in real-world undirected social networks. HopRank is a model of information foraging on networks. Its key component is a biased random walker based on transition probabilities between k-hop neighborhoods. Janus is a Bayesian framework that allows to identify and rank plausible hypotheses of edge formation in cases where nodes possess additional information. In the second part of this thesis, I investigate the implications of these mechanisms - that explain edge formation in social networks - on machine learning. Specifically, I study the influence of homophily, preferential attachment, edge density, fraction of inorities, and the directionality of links on both performance and bias of collective classification, and on the visibility of minorities in top-k ranks. My findings demonstrate a strong correlation between network structure and machine learning outcomes. This suggests that systematic discrimination against certain people can be: (i) anticipated by the type of network, and (ii) mitigated by connecting strategically in the network.
This thesis analyzes the online attention towards scientists and their research topics. The studies compare the attention dynamics towards the winners of important scientific prizes with scientists who did not receive a prize. Web signals such as Wikipedia page views, Wikipedia edits, and Google Trends were used as a proxy for online attention. One study focused on the time between the creation of the article about a scientist and their research topics. It was discovered that articles about research topics were created closer to the articles of prize winners than to scientists who did not receive a prize. One possible explanation could be that the research topics are more closely related to the scientist who got an award. This supports that scientists who received the prize introduced the topics to the public. Another study considered the public attention trends towards the related research topics before and after a page of a scientist was created. It was observed that after a page about a scientist was created, research topics of prize winners received more attention than the topics of scientists who did not receive a prize. Furthermore, it was demonstrated that Nobel Prize winners get a lower amount of attention before receiving the prize than the potential nominees from the list of Citation Laureates of Thompson Reuters. Also, their popularity is going down faster after receiving it. It was also shown that it is difficult to predict the prize winners based on the attention dynamics towards them.
The content aggregator platform Reddit has established itself as one of the most popular websites in the world. However, scientific research on Reddit is hindered as Reddit allows (and even encourages) user anonymity, i.e., user profiles do not contain personal information such as the gender. Inferring the gender of users in large-scale could enable the analysis of gender-specific areas of interest, reactions to events, and behavioral patterns. In this direction, this thesis suggests a machine learning approach of estimating the gender of Reddit users. By exploiting specific conventions in parts of the website, we obtain a ground truth for more than 190 million comments of labeled users. This data is then used to train machine learning classifiers to use them to gain insights about the gender balance of particular subreddits and the platform in general. By comparing a variety of different approaches for classification algorithm, we find that character-level convolutional neural network achieves performance with an 82.3% F1 score on a task of predicting a gender of a user based on his/her comments. The score surpasses 85% mark for frequent users with more than 50 comments. Furthermore, we discover that female users are less active on Reddit platform, they write fewer comments and post in fewer subreddits on average, when compared to male users.
This Master Thesis is an exploratory research to determine whether it is feasible to construct a subjectivity lexicon using Wikipedia. The key hypothesis is that that all quotes in Wikipedia are subjective and all regular text are objective. The degree of subjectivity of a word, also known as ''Quote Score'' is determined based on the ratio of word frequency in quotations to its frequency outside quotations. The proportion of words in the English Wikipedia which are within quotations is found to be much smaller as compared to those which are not in quotes, resulting in a right-skewed distribution and low mean value of Quote Scores.
The methodology used to generate the subjectivity lexicon from text corpus in English Wikipedia is designed in such a way that it can be scaled and reused to produce similar subjectivity lexica of other languages. This is achieved by abstaining from domain and language-specific methods, apart from using only readily-available English dictionary packages to detect and exclude stopwords and non-English words in the Wikipedia text corpus.
The subjectivity lexicon generated from English Wikipedia is compared against other lexica; namely MPQA and SentiWordNet. It is found that words which are strongly subjective tend to have high Quote Scores in the subjectivity lexicon generated from English Wikipedia. There is a large observable difference between distribution of Quote Scores for words classified as strongly subjective versus distribution of Quote Scores for words classified as weakly subjective and objective. However, weakly subjective and objective words cannot be differentiated clearly based on Quote Score. In addition to that, a questionnaire is commissioned as an exploratory approach to investigate whether subjectivity lexicon generated from Wikipedia could be used to extend the coverage of words of existing lexica.
We examine the systematic underrecognition of female scientists (Matilda effect) by exploring the citation network of papers published in the American Physical Society (APS) journals. Our analysis shows that articles written by men (first author, last author and dominant gender of authors) receive more citations than similar articles written by women (first author, last author and dominant gender of authors) after controlling for the journal of publication, year of publication and content of the publication. Statistical significance of the overlap between the lists of references was considered as the measure of similarity between articles in our analysis. In addition, we found that men are less likely to cite articles written by women and women are less likely to cite articles written by men. This pattern leads to receiving more citations by articles written by men than similar articles written by women because the majority of authors who published in APS journals are male (85%). We also observed Matilda effect reduces when articles are published in journals with the highest impact factors. In other words, people’s evaluation of articles published in these journals is not affected by the gender of authors significantly. Finally, we suggested a method that can be applied by editors in academic journals to reduce the evaluation bias to some extent. Editors can identify missing citations using our proposed method to complete bibliographies. This policy can reduce the evaluation bias because we observed papers written by female scholars (first author, last author, the dominant gender of authors) miss more citations than articles written by male scholars (first author, last author, the dominant gender of authors).