Refine
Document Type
- Bachelor Thesis (2)
- Master's Thesis (1)
Keywords
- Android (1)
- Android <Systemplattform> (1)
- App (1)
- App <Programm> (1)
- Computerspiel (1)
- OCR (1)
- Optische Zeichenerkennung (1)
- Prozedurale Synthese (1)
- Tesseract (1)
- Translation (1)
Development of an Android Application for the Recognition and Translation of Words in Camera Scenes
(2012)
This bachelor- thesis describes the conception and implementation of a translation software for the Android platform. The specific feature of the software is the independent text recognition based on the view of the camera. This approach aims to enhance and accelerate the process of translation in certain situations. After an introduction into text recognition, the underlying technologies and the operation system Android useful applications are described. Then the concept of the software is created and the implementation examined. Finally an evaluation is conducted to identify strengths and weaknesses of the software.
Magnetic resonance (MR) tomography is an imaging method, that is used to expose the structure and function of tissues and organs in the human body for medical diagnosis. Diffusion weighted (DW) imaging is a specific MR imaging technique, which enables us to gain insight into the connectivity of white matter pathways noninvasively and in vivo. It allows for making predictions about the structure and integrity of those connections. In clinical routine this modality finds application in the planning phase of neurosurgical operations, such as in tumor resections. This is especially helpful if the lesion is deeply seated in a functionally important area, where the risk of damage is given. This work reviews the concepts of MR imaging and DW imaging. Generally, at the current resolution of diffusion weighted data, single white matter axons cannot be resolved. The captured signal rather describes whole fiber bundles. Beside this, it often appears that different complex fiber configurations occur in a single voxel, such as crossings, splittings and fannings. For this reason, the main goal is to assist tractography algorithms who are often confound in such complex regions. Tractography is a method which uses local information to reconstruct global connectivities, i.e. fiber tracts. In the course of this thesis, existing reconstruction methods such as diffusion tensor imaging (DTI) and q-ball imaging (QBI) are evaluated on synthetic generated data and real human brain data, whereas the amount of valuable information provided by the individual reconstruction mehods and their corresponding limitations are investigated. The output of QBI is the orientation distribution function (ODF), where the local maxima coincides with the underlying fiber architecture. We determine those local maxima. Furthermore, we propose a new voxel-based classification scheme conducted on diffusion tensor metrics. The main contribution of this work is the combination of voxel-based classification, local maxima from the ODF and global information from a voxel- neighborhood, which leads to the development of a global classifier. This classifier validates the detected ODF maxima and enhances them with neighborhood information. Hence, specific asymmetric fibrous architectures can be determined. The outcome of the global classifier are potential tracking directions. Subsequently, a fiber tractography algorithm is designed that integrates along the potential tracking directions and is able to reproduce splitting fiber tracts.
Procedural content generation, the generation of video game content using pseudo-random algorithms, is a field of increasing business and academic interest due to its suitability for reducing development time and cost as well as the possibility of creating interesting, unique game spaces. Although many contemporary games feature procedurally generated content, the author perceived a lack of games using this approach to create realistic outer-space game environments, and the feasibility of employing procedural content generations in such a game was examined. Using current scientific models, a real-time astronomical simulation was developed in Python which generates star and planets object in a fictional galaxy procedurally to serve as the game space of a simple 2D space exploration game where the player has to search for intelligent life.