Refine
Keywords
- Araneae (1)
- behavioural ecology (1)
- non-consumptive effects (1)
- trait-mediated effects (1)
- trophic cascades (1)
Non-Consumptive Effects of Spiders and Ants: Does Fear Matter in Terrestrial Interaction Webs?
(2014)
Most animals suffer from predators. Besides killing prey, predators can affect prey physiology, morphology and behaviour. Spiders are among the most diverse and frequent predators in terrestrial ecosystems. Our behavioural arena experiments revealed that behavioural changes under spider predation risk are relatively scarce among arthropods. Wood crickets (Nemobius sylvestris), in particular, changed their behaviour in response to cues of various spider species. Thereby, more common and relatively larger spider species induced stronger antipredator behaviour in crickets.
Behavioural changes under predation risk are expected to enhance predator avoidance, but they come at a cost. Crickets previously confronted with cues of the nursery web spider (Pisaura mirabilis) were indeed more successful in avoiding predation. Surprisingly, crickets slightly increased food uptake and lost less weight under predation risk, indicating that crickets are able to compensate for short-term cost under predation risk. In a following plant choice experiment, crickets strongly avoided plants bearing spider cues, which in turn reduced the herbivory on the respective plants.
Similar to spiders, ants are ubiquitous predators and can have a strong impact on herbivores, but also on other predators. Juvenile spiders increased their propensity for long-distance dispersal if exposed to ant cues. Thus, spiders use this passive dispersal through the air (ballooning) to avoid ants and colonise new habitats.
In a field experiment, we compared arthropod colonisation between plants bearing cues of the nursery web spider and cue-free plants. We followed herbivory during the experimental period and sampled the arthropod community on the plants. In accordance with the plant choice experiment, herbivory was reduced on plants bearing spider cues. In addition, spider cues led to changes in the arthropod community: smaller spiders and black garden ants (Lasius niger) avoided plants bearing spider cues. In contrast, common red ants (Myrmica rubra) increased the recruitment of workers, possibly to protect their aphids.
Although behavioural changes were relatively rare on filter papers bearing spider cues, more natural experimental setups revealed strong and far-reaching effects of predation risk. We further suggest that risk effects influence the spatial distribution of herbivory, rather than reduce overall herbivory that is expected if predators kill herbivores. Consequently, the relative importance of predation and risk effects is crucial for the way predators affect lower trophic levels.