Refine
Keywords
- Bodenchemie (2)
- soil organic matter (2)
- 1H-NMR Relaxometry (1)
- Abwasser (1)
- Agriculture (1)
- Benetzung (1)
- Biohydrogel (1)
- Boden (1)
- Bodenphysik (1)
- Bodenwasser (1)
Gel effect induced by mucilage in the pore space and consequences on soil physical properties
(2020)
Water uptake, respiration and exudation are some of the biological functions fulfilled by plant roots. They drive plant growth and alter the biogeochemical parameters of soil in the vicinity of roots, the rhizosphere. As a result, soil processes such as water fluxes, carbon and nitrogen exchanges or microbial activity are enhanced in the rhizosphere in comparison to the bulk soil. In particularly, the exudation of mucilage as a gel-like substance by plant roots seems to be a strategy for plants to overcome drought stress by increasing soil water content and soil unsaturated hydraulic conductivity at negative water potentials. Although the variations of soil properties due to mucilage are increasingly understood, a comprehensive understanding of the mechanisms in the pore space leading to such variations is lacking.
The aim of this work was to elucidate the gel properties of mucilage in the pore space, i.e. interparticulate mucilage, in order to link changes of the physico-chemical properties in the rhizosphere to mucilage. The fulfilment of this goal was confronted to the three following challenges: The lack of methods for in situ detection of mucilage in soil; The lack of knowledge concerning the properties of interparticulate mucilage; The unknown relationship between the composition and the properties of model substances and root mucilage produced by various species. These challenges are addressed in several chapters.
In a first instance, a literature review picked information from various scientific fields about methods enabling the characterization of gels and gel phases in soil. The variation of soil properties resulting from biohydrogel swelling in soil was named the gel effect. The combined study of water entrapment of gels and gel phases in soil and soil structural properties in terms of mechanical stability or visual structures proved promising to disentangle the gel effect in soil.
The acquired methodical knowledge was used in the next experiments to detect and characterize the properties of interparticulate gel. 1H NMR relaxometry allows the non-invasive measure of water mobility in porous media. A conceptual model based on the equations describing the relaxation of water protons in porous media was developed to integrate the several gel effects into the NMR parameters and quantify the influence of mucilage on proton relaxation. Rheometry was additionally used to assess mucilage viscosity and soil microstructural stability and ESEM images to visualize the network of interparticulate gel. Combination of the results enabled to identify three main interparticulate gel properties: The spider-web effect restricts the elongation of the polymer chains due to the grip of the polymer network to the surface of soil particles. The polymer network effect illustrates the organization of the polymer network in the pore space according to the environment. The microviscosity effect describes the increased viscosity of interparticulate gel in contrast to free gel. The impact of these properties on soil water mobility and microstructural stability were investigated. Consequences on soil hydraulic and soil mechanical properties found in the literature are further discussed.
The influence of the chemical properties of polymers on gel formation mechanism and gel properties was also investigated. For this, model substances with various uronic acid content, degree of esterification and amount of calcium were tested and their amount of high molecular weight substances was measured. The substances investigated included pectic polysaccharides and chia seed mucilage as model polymers and wheat and maize root mucilage. Polygalacturonic acid and low-methoxy pectin proved as non-suitable model polymers for seed and root mucilage as ionic interactions with calcium control their properties. Mucilage properties rather seem to be governed by weak electrostatic interactions between the entangled polymer chains. The amount of high molecular weight material varies considerably depending on mucilage´s origin and seems to be a straight factor for mucilage’s gel effect in soil. Additionally to the chemical characterization of the high molecular weight compounds, determination of their molecular weight and of their conformation in several mucilages types is needed to draw composition-property profiles. The variations measured between the various mucilages also highlight the necessity to study how the specific properties of the various mucilages fulfill the needs of the plant from which they are exuded.
Finally, the integration of molecular interactions in gel and interparticulate gel properties to explain the physical properties of the rhizosphere was discussed. This approach offers numerous perspectives to clarify for example how water content or hydraulic conductivity in the rhizosphere vary according to the properties of the exuded mucilage. The hypothesis that the gel effect is general for all soil-born exudates showing gel properties was considered. As a result, a classification of soil-born gel phases including roots, seeds, bacteria, hyphae and earthworm’s exuded gel-like material according to their common gel physico-chemical properties is recommended for future research. An outcome could be that the physico-chemical properties of such gels are linked with the extent of the gel effect, with their impact on soil properties and with the functions of the gels in soil.
Organic substances play an essential role for the formation of stable soil structures. In this context, their physico-chemical properties, interactions with mineral soil constituents and soil-water interactions are particu-larly important. However, the underlying mechanisms contributing to soil particle cementation by swollen or-ganic substances (hydrogels) remains unclear. Up to now, no mechanistic model is available which explains the mechanisms of interparticulate hydrogel swelling and its contribution to soil-water interactions and soil structur-al stability. This mainly results from the lack of appropriate testing methods to study hydrogel swelling in soil as well as from the difficulties of adapting available methods to the system soil/hydrogel.
In this thesis, 1H proton nuclear magnetic resonance (NMR) relaxometry was combined with various soil micro- and macrostructural stability testing methods in order to identify the contribution of hydrogel swelling-induced soil-water interactions to the structural stability of water-saturated and unsaturated soils. In the first part, the potentials and limitations of 1H NMR relaxometry to enlighten soil structural stabilization mechanism and vari-ous water populations were investigated. In the second part, 1H-NMR relaxometry was combined with rheologi-cal measurements of soil to assess the contribution of interparticulate hydrogel swelling and various polymer-clay interactions on soil-water interactions and soil structural stability in an isolated manner. Finally, the effects of various organic and mineral soil fractions on soil-water interactions and soil structural stability was assessed in more detail for a natural, agriculturally cultivated soil by soil density fractionation and on the basis of the experiences gained from the previous experiments.
The increased experiment complexity in the course of this thesis enabled to link physico-chemical properties of interparticulate hydrogel structures with soil structural stability on various scales. The established mechanistic model explains the contribution of interparticulate hydrogels to the structural stability of water-saturated and unsaturated soils: While swollen clay particles reduce soil structural stability by acting as lubricant between soil particles, interparticulate hydrogel structures increase soil structural stability by forming a flexible polymeric network which interconnects mineral particles more effectively than soil pore- or capillary water. It was appar-ent that soil structural stability increases with increasing viscosity of the interparticluate hydrogel in dependence on incubation time, soil texture, soil solution composition and external factors in terms of moisture dynamics and agricultural management practices. The stabilizing effect of interparticulate hydrogel structures further in-crease in the presence of clay particles which is attributed to additional polymer-clay interactions and the incor-poration of clay particles into the three-dimensional interparticulate hydrogel network. Furthermore, the simul-taneous swelling of clay particles and hydrogel structures results in the competition for water and thus in a mu-tual restriction of their swelling in the interparticle space. Thus, polymer-clay interactions not only increase the viscosity of the interparticulate hydrogel and thus its ability to stabilize soil structures but further reduce the swelling of clay particles and consequently their negative effects on soil structural stability. The knowledge on these underlying mechanisms enhance the knowledge on the formation of stable soil structures and enable to take appropriate management practices in order to maintain a sustainable soil structure. The additionally out-lined limitations and challenges of the mechanistic model should provide information on areas with optimization and research potential, respectively.
Because silver nanoparticles (Ag NPs) are broadly applied in consumer products, their leaching will result in the continuous release of Ag NPs into the natural aquatic environment. Therefore, bacterial biofilms, as the prominent life form of microorganisms in the aquatic environment, are most likely confronted with Ag NPs as a pollutant stressor. Notwithstanding the significant ecological relevance of bacterial biofilms in aquatic systems, and though Ag NPs are expected to accumulate within these biofilms in the environment, the knowledge on the environmental and ecological impact of Ag NPs, is still lagging behind the industrial growth of nanotechnology. Consequently, aim of this thesis was to perform effect assessment of Ag NP exposure on bacterial biofilms with ambient Ag NPs concentrations and under environmentally relevant conditions. Therefore, a comprehensive set of methods was applied in this work to study if and how Ag NPs of two different sizes (30 and 70 nm) affect bacterial biofilms i.e. both monospecies biofilms and freshwater biofilms in environmentally relevant concentrations (600 - 2400 µg l-1). Within the first part of this work, a newly developed assay to test the mechanical stability of
monospecies biofilms of the freshwater model bacterium Aquabacterium citratiphilum was validated. In the first study, to investigate the impact of Ag NPs on the mechanical stability of bacterial biofilms, sublethal effects on the mechanical stability of the biofilms were observed with negative implications for biostabilization. Furthermore, as it is still challenging to monitor the ecotoxicity of Ag NPs in natural freshwater environments, a mesocosm study was performed in this work to provide the possibility for the detailed investigation of effects of Ag NPs on freshwater biofilms under realistic environmental conditions. By applying several approaches to analyze biofilms as a whole in response to Ag NP treatment, insights into the resilience of bacterial freshwater biofilms were obtained. However, as revealed by t-RFLP fingerprinting combined with phylogenetic studies based on the 16S gene, a shift in the bacterial community composition, where Ag NP-sensitive bacteria were replaced by more Ag NP-tolerant species with enhanced adaptability towards Ag NP stress was determined. This shift within the bacterial community may be associated with potential detrimental effects on the functioning of these biofilms with respect to nutrient loads, transformation and/or degradation of pollutants, and biostabilization. Overall, bringing together the key findings of this thesis, 4 general effect mechanisms of Ag NP treatment have been identified, which can be extrapolated to natural freshwater biofilms i.e. (i) the identification of Comamonadaceae as Ag NP-tolerant, (ii) a particular resilient behaviour of the biofilms, (iii) the two applied size fractions of Ag NPs exhibited similar effects independent of their sizes and their synthesis method, and (iv) bacterial biofilms show a high uptake capacity for Ag NPs, which indicates cumulative enrichment.
The use of agricultural plastic covers has become common practice for its agronomic benefits such as improving yields and crop quality, managing harvest times better, and increasing pesticide and water use efficiency. However, plastic covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. A better understanding of the sources and fate of plastic debris in terrestrial systems has so far been hindered by the lack of adequate analytical techniques for the mass-based and polymer-selective quantification of plastic debris in soil. The aim of this dissertation was thus to assess, develop, and validate thermoanalytical methods for the mass-based quantification of relevant polymers in and around agricultural fields previously covered with fleeces, perforated foils, and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled direct plastic analyses of 50 mg of soil without any sample preparation. With polyethylene terephthalate (PET) as a preliminary model, the method limit of detection (LOD) was 0.7 g kg−1. But the missing chromatographic separation complicated the quantification of polymer mixtures. Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was developed that additionally exploited the selective solubility of polymers in specific solvents prior to analysis. By dissolving polyethylene (PE), polypropylene (PP), and polystyrene (PS) in a mixture of 1,2,4-trichlorobenzene and p-xylene after density separation, up to 50 g soil became amenable to routine plastic analysis. Method LODs were 0.7–3.3 mg kg−1, and the recovery of 20 mg kg−1 PE, PP, and PS from a reference loamy sand was 86–105%. In the reference silty clay, however, poor PS recoveries, potentially induced by the additional separation step, suggested a qualitative evaluation of PS. Yet, the new solvent-based Py-GC/MS method enabled a first exploratory screening of plastic-covered soil. It revealed PE, PP, and PS contents above LOD in six of eight fields (6% of all samples). In three fields, PE levels of 3–35 mg kg−1 were associated with the use of 40 μm thin perforated foils. By contrast, 50 μm PE films were not shown to induce plastic levels above LOD. PP and PS contents of 5–19 mg kg−1 were restricted to single observations in four fields and potentially originated from littering. The results suggest that the short-term use of thicker and more durable plastic covers should be preferred to limit plastic emissions and accumulation in soil. By providing mass-based information on the distribution of the three most common plastics in agricultural soil, this work may facilitate comparisons with modeling and effect data and thus contribute to a better risk assessment and regulation of plastics. However, the fate of plastic debris in the terrestrial environment remains incompletely understood and needs to be scrutinized in future, more systematic research. This should include the study of aging processes, the interaction of plastics with other organic and inorganic compounds, and the environmental impact of biodegradable plastics and nanoplastics.
The global problematic issue of the olive oil industry is in its generation of large amounts of olive mill wastewater (OMW). The direct discharge of OMW to the soil is very common which presents environmental problems for olive oil producing countries. Both, positive as well as negative effects on soil have been found in earlier studies. Therefore, the current study hypothesized that whether beneficial effects or negative effects dominate depends on the prevailing conditions before and after OMW discharge to soil. As such, a better understanding of the OMW-soil interaction mechanisms becomes essential for sustainable safe disposal of OMW on soil and sustainable soil quality.
A field experiment was carried out in an olive orchard in Palestine, over a period of 24 months, in which the OMW was applied to the soil as a single application of 14 L m-2 under four different environmental conditions: in winter (WI), spring (SP), and summer with and without irrigation (SUmoist and SUdry). The current study investigated the effects of seasonal conditions on the olive mill wastewater (OMW) soil interaction in the short-term and the long-term. The degree and persistence of soil salinization, acidification, accumulation of phenolic compounds and soil water repellency were investigated as a function of soil depth and time elapsed after the OMW application. Moreover, the OMW impacts on soil organic matter SOM quality and quantity, total organic carbon (SOC), water-extractable soil organic carbon (DOC), as well as specific ultraviolet absorbance analysis (SUVA254) were also investigated for each seasonal application in order to assess the degree of OMW-OM decomposition or accumulation in soil, and therefore, the persisting effects of OMW disposal to soil.
The results of the current study demonstrate that the degree and persistence of relevant effects due to OMW application on soil varied significantly between the different seasonal OMW applications both in the short-term and the long-term. The negative effects of the potentially hazardous OMW residuals in the soil were highly dependent on the dominant transport mechanisms and transformation mechanisms, triggered by the ambient soil moisture and temperature which either intensified or diminished negative effects of OMW in the soil during and after the application season. The negative effects of OMW disposal to the soil decreased by increasing the retention time of OMW in soil under conditions favoring biological activity. The moderate conditions of soil moisture and temperature allowed for a considerable amount of applied OMW to be biologically degraded, while the prolonged application time under dry conditions and high temperature resulted in a less degradable organic fraction of the OMW, causing the OMW constituents to accumulate and polymerize without being degraded. Further, the rainfall during winter season diminished negative effects of OMW in the soil; therefore, the risk of groundwater contamination by non-degraded constituents of OMW can be highly probable during the winter season.
Abstract The present work investigates the wetting characteristics of soils with regard to their dependence on environmental parameters such as water content (WC), pH, drying temperature and wetting temperature of wettable and repellent soils from two contrasting anthropogenic sites, the former sewage disposal field Berlin-Buch and the inner-city park Berlin-Tiergarten. The aim of this thesis is to deepen the understanding of processes and mechanisms leading to changes in soil water repellency. This helps to gain further insight into the behaviour of soil organic matter (SOM) and identifying ways to prevent or reduce the negative effects of soil water repellency (SWR). The first focus of this work is to determine whether chemical reactions are required for wetting repellent samples. This hypothesis was tested by time and temperature dependence of sessile drop spreading on wettable and repellent samples. Additionally, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to determine whether various drying regimes cause changes in the relative abundance of hydrophobic and hydrophilic functional groups in the outer layer of soil particles and whether these changes can be correlated with water content and the degree of SWR. Finally, by artificially altering the pH in dried samples applying acidic and alkaline reagents in a gaseous state, the influence of only pH on the degree of SWR was investigated separately from the influence of changes in moisture status. The investigation of the two locations Buch and Tiergarten, each exceptionally different in the nature of their respective wetting properties, leads to new insights in the variety of appearance of SWR. The results of temperature, water content and pH dependency of SWR on the two contrasting sites resulted in one respective hypothetical model of nature of repellency for each site which provides an explanation for most of the observations made in this and earlier studies: At the Tiergarten site, wetting characteristics are most likely determined by micelle-like arrangement of amphiphiles which depends on the concentration of water soluble amphiphilic substances, pH and ionic strength in soil solution. At low pH and at high ionic strength, repulsion forces between hydrophilic charged groups are minimized allowing their aggregation with outward orientated hydrophobic molecule moieties. At high pH and low ionic strength, higher repulsion forces between hydrophilic functional groups lead to an aggregation of hydrophobic groups during drying, which results in a layer with outward oriented hydrophilic moieties on soil organic matter surface leading to enhanced wettability. For samples from the Buch site, chemical reactions are necessary for the wetting process. The strong dependence of SWR on water content indicates that hydrolysis-condensation reactions are the controlling mechanisms. Since acid catalyzed hydrolysis is an equilibrium reaction dependent on water content, an excess of water favours hydrolysis leading to an increasing number of hydrophilic functional groups. In contrast, water deficiency favours condensation reactions leading to a reduction of hydrophilic functional groups and thus a reduction of wettability. The results of the present investigation and its comparison with earlier investigations clearly show that SWR is subject to numerous antagonistically and synergistically interacting environmental factors. The degree of influence, which a single factor exerts on SWR, is site-specific, e.g., it is dependent on special characteristics of mineral constituents and SOM which underlies the influence of climate, soil texture, topography, vegetation and the former and current use of the respective site.
The (un-)controlled application of olive oil mill wastewater (OMW) has positive and negative effects on soil quality. On the one hand it can be used as fertilizer, on the other hand especially the occurrence of soil water repellency is problematic. Due to this fact the objective of this study was to characterize the effects of OMW application on soil and to investigate the mechanisms that are in combination with changes of soil organic matter quality responsible for soil water repellency depending on the climatic conditions.
At first several locations of uncontrolled OMW disposal were screened for positive and negative im-pacts. Then, laboratory incubation experiments and finally a field experiment in Israel were conducted in order to determine the influence of climatic conditions. Besides standard soil parameters (pH, elec-tric conductivity, total carbon, dissolved organic carbon , specific UV-Absorption) it was focused on the determination of phenolic compounds, the carbon isotope ratio, the water drop penetration time and the contact angle as well as the thermal analysis.
This thesis shows that soil water repellency of OMW-polluted soils depends on the climatic conditions, i.e. the application season. In the laboratory as well as in the field the wettability of the soil was strongly reduced under hot and dry conditions. It was observed, that the stable carbon fraction characterized by a high calorific value is responsible for soil water repellency. In particular, amphiphilic substances, e.g. fatty acids, may interact with soil particles as a consequence of drying. On the contrary, no reduc-tion of the wettability of the soil was determined under moist conditions and degradation of organic matter of the OMW was enhanced. Nevertheless, too strong irrigation or rainfall, e.g. in winter, may leach phenolic ingredients of the OMW into the groundwater.
At the same time the application led to an increase of organic and inorganic nutrients, which should be emphasized as a positive effect. Due to these results, a controlled application of olive oil mill wastewater as alternative, low-cost and sustainable treatment option is recommended. But, instead of the current application season winter, the olive mill wastewater should be stored and not be spread before spring in order to avoid negative impacts on the soil.
A fundamental understanding of attachment of engineered nanoparticles to environmentalrnsurfaces is essential for the prediction of nanoparticle fate and transport in the environment.
The present work investigates the attachment of non-coated silver nanoparticles and citraterncoated silver nanoparticles to different model surfaces and environmental surfaces in thernpresence and absence of humic acid. Batch sorption experiments were used for this investigation.
The objective of this thesis was to investigate how silver nanoparticles interactrnwith surfaces having different chemical functional groups. The effect of presence of HA, on the particle-surface interactions was also investigated. In the absence of humic acid, nanoparticle-surface interactions or attachment was influencedrnby the chemical nature of the interacting surfaces. On the other hand, in the presence ofrnhumic acid, nanoparticle-surface attachment was influenced by the specific surface area of the sorbent surfaces. The sorption of non-coated silver nanoparticles and citrate coatedrnnanoparticles to all the surfaces was nonlinear and best described by Langmuir isotherm, indicating monolayer sorption of nanoparticles on to the surfaces. This can be explained as due to the blocking effect generated by the particle-particle repulsion. In the presence of humic acid, sorption of nanoparticles to the surfaces was linear. When the humic acid was present in the interacting medium, both the nanoparticles and surfaces were getting coated with humic acid and this masks the chemical functionalities of the surfaces. This leads to the change in particle-surface interactions, in the presence of humic acid. For the silver nanoparticle sorption from an unstable suspension, the sorption isotherms did not follow any classical sorption models, suggesting interplay between aggregation and sorption. Citrate coated silver nanoparticles and humic acid coated silver nanoparticles showed arndepression in sorption compared to the sorption of non-coated silver nanoparticles. In therncase of citrate coated silver nanoparticles the decrease in sorption can be explained by thernmore negative zeta potential of citrate coated nanoparticles compared to non-coated ones. For humic acid coated nanoparticles the sorption depression can be due to the steric hindrance caused by the free humic acid molecules which may coat the sorbent surface or due to the competition for sorption sites between the nanoparticle and free humic acid molecules present in the suspension. Thus nanoparticle surface chemistry is an important factor that determines the attachment of nanoparticles towards surfaces and it makes the characterization of nanoparticle surface an essential step in the study of their fate in the environment.
Another aim of this study was to introduce the potential of chemical force microscopy for nanoparticle surface characterization. With the use of this technique, it was possible to distinguish between bare silver nanoparticles, citrate coated silver nanoparticles, and humic acid coated silver nanoparticles. This was possible by measuring the adhesion forces between the nanoparticles and five different AFM probes having different chemical functionalization.
The intention of this thesis was to characterise the effect of naturally occurring multivalent cations like Calcium and Aluminium on the structure of Soil Organic Matter (SOM) as well as on the sorption behaviour of SOM for heavy metals such as lead.
The first part of this thesis describes the results of experiments in which the Al and Ca cation content was changed for various samples originated from soils and peats of different regions in Germany. The second part focusses on SOM-metal cation precipitates to study rigidity in dependence of the cation content. In the third part the effects of various cation contents in SOM on the binding strength of Pb cations were characterised by using a cation exchange resin as desorption method.
It was found for soil and peat samples as well as precipitates that matrix rigidity was affected by both type and content of cation. The influence of Ca on rigidity was less pronounced than the influence of Al and of Pb used in the precipitation experiments. For each sample one cation content was identified where matrix rigidity was most pronounced. This specific cation content is below the cation saturation as expected by cation exchange capacity. These findings resulted in a model describing the relation between cation type, content and the degree of networking in SOM. For all treated soil and precipitate samples a step transition like glass transition was observed, determined by the step transition temperature T*. It is known from literature that this type of step transition is due to bridges between water molecules and organic functional groups in SOM. In contrast to the glass transition temperature this thermal event is slowly reversing after days or weeks depending on the re-conformation of the water molecules. Therefore, changes of T* with different cation compositions in the samples are explained by the formation of water-molecule-cation bridges between SOM-functional groups. No influence on desorption kinetics of lead for different cation compositions in soil samples was observed. Therefore it can be assumed that the observed changes of matrix rigidity are highly reversible by changing the water status, pH or putting agitation energy by shaking in there.
Agriculture requires a sustainable intensification to feed the growing world population without exacer-bating soil degradation and threatening soil quality. Globally, plastic mulching (PM) is increasingly used to improve crop growth and yields and consequently agronomic productivity. However, recent literature reported also critical aspects of PM for soil quality and showed contradictory outcomes. This might result from the numerous applications of PM in different climates across various crops, soils and agri-cultural techniques. Thus, a closer look is necessary on how PM influences soil processes under certain climate and cultivation conditions to obtain a comprehensive understanding of its effects, which is im-portant to evaluate PM in terms of a sustainable agriculture.
The aim of this PhD thesis was to understand how multiannual PM influences soil properties and pro-cesses under the temperate, humid Central European cultivation conditions and to evaluate the resulting consequences for soil quality. I designed a three-year field study to investigate the influence of PM (black polyethylene, 50 μm) on microclimate, structural stability, soil organic matter (SOM) and the concentrations of selected fungicides and mycotoxins in three soil layers (0–10, 10–30 and 30–60 cm) compared to straw mulching (SM). Both mulching types were applied in a drip-irrigated ridge-furrow system in strawberry cultivation.
PM shifted the soil microclimate to higher soil temperatures and lower soil moistures. The higher soil temperature seems thus to be the key factor for the increased crop growth and yields under the present humid climate. The reduced soil moisture under PM indicated that under PM the impeded rainfall infil-tration had a stronger effect on the water balance than the reduced evaporation. This indicate an ineffi-cient rainwater use in contrast to arid climates. PM changed the water cycling in the ridges from down-ward directed water flows to lateral water flows from furrows to ridges. This reduced nitrogen leaching in the topsoil (0–10 cm) in the strawberry establishment period. The plastic mulches avoided aggregate breakdown due to rapid soil wetting and excess water during rainfalls and thus maintained a loose and stable soil structure in the surface soil, which prevents soil compaction and made soil less prone to erosion. PM changed carbon fluxes and transformation so that a larger total and more stable SOM was observed. Thus, the higher belowground biomass productivity under PM compensated the impeded aboveground biomass input and the temperature-induced SOM decomposition. However, SM increased the labile and total SOM in the topsoil after the first experiment year and promoted microbial growth due to the aboveground biomass incorporation. PM reduced fungicide entry into soil compared to SM and reduced consequently the fungal biomass reduction and the biosynthesis of the mycotoxin deoxyni-valenol. The modified microclimate under PM did not increase mycotoxin occurrence. In this context, PM poses no risk for an increased soil contamination, impairing soil quality. This PhD thesis demon-strated that the PM effects on soil can vary depending on time, season and soil depth, which emphasizes the importance to include soil depth and time in future studies.
Compared to semiarid and arid regions, the PM effects found in this PhD thesis were small, absent or in another way. I attributed this to the fact that PM under humid climate reduced instead of increased soil moisture and that SM had due to straw und strawberry canopy a similar ‘covering effect’ as PM. Thus, generalizing the PM effects on soil across different climates seems hardly possible as they differ in type and extent depending on climate. A differentiated consideration is hence necessary to evaluate the PM effects on soil quality. I conclude that PM under temperate, humid climate might contribute to reduce soil degradation (e.g., SOM depletion, erosion, nutrient leaching, soil compaction and soil contamina-tion), which sustains soil quality and helps to enable a sustainable agricultural intensification. However, further research is necessary (1) to support my findings on a larger scale, longer time periods and across various soil and crop types, (2) to address remaining open questions and (3) to develop optimization to overcome the critical aspects of PM (e.g. macro- and microplastic waste in soil, mulch disposal).