Refine
Keywords
- Aluminiumorthophosphat (1)
- Arzneimittel (1)
- Biotransformation (1)
- Bororthophosphat (1)
- Cloud Point Extraction (1)
- Environmental samples (1)
- Fischgewebe (1)
- Größenfraktionierung (1)
- ICM (1)
- Kolloide (1)
Investigating the environmental fate of iodinated X-ray contrast media in the urban water cycle
(2010)
Iodinated X-ray contrast media (ICM) are a group of emerging contaminants which have been detected at elevated concentrations in the aquatic environment. These compounds are excreted unmetabolized into hospital wastewater, and eventually treated at wastewater treatment plants (WWTPs). The removal of ICM in WWTPs has not been very effective and therefore the ICM enter the aquatic environment via WWTP effluent discharges. Research has investigated the removal of selected ICM via abiotic and biotic processes, however limited work has attempted to determine the fate of these compounds once released into the environment. This thesis investigates the biotransformation of four selected ICM (diatrizoate, iohexol, iomeprol, and iopamidol) in aerobic soil-water and sediment-water systems as well as in different environmental matrices. Iohexol, iomeprol and iopamidol were biotransformed to several TPs in the aerobic batch systems, while no biotransformation was observed for the ionic ICM, diatrizoate. In total 34 biotransformation products (TPs) of the three non-ionic ICM were identified. The combination of semi-preparative HPLC-UV, hybrid triple quadrupole-linear ion trap mass spectrometry (Qq-LIT-MS) was found to be an accurate approach for the structural elucidation of ICM TPs. The ICM TPs resulted in microbial transformation occurring at the side chains of the parent ICM, with the iodinated aromatic ring unmodified.
Within aquatic environments sediment water interfaces (SWIs) are the most important areas concerning exchange processes between the water body and the sediment. These spatially restricted regions are characterized by steep biogeochemical gradients that determine the speciation and fate of natural or artificial substances. Apart from biological mediated processes (e.g., burrowing organisms, photosynthesis) the determining exchange processes are diffusion or a colloid-mediated transport. Hence, methods are required enabling to capture the fine scale structures at the boundary layer and to distinguish between the different transport pathways. Regarding emerging substances that will probably reach the aquatic environment engineered nanomaterials (ENMs) are of great concern due to their increased use in many products and applications. Since they are determined based on their size (<100 nm) they include a variety of different materials behaving differently in the environment. Once released, they will inevitable mix with naturally present colloids (< 1 μm) including natural nanomaterials.
With regard to existing methodological gaps concerning the characterization of ENMs (as emerging substances) and the investigation of SWIs (as receiving environmental compartments), the aim of this thesis was to develop, validate and apply suitable analytical tools. The challenges were to i) develop methods that enable a high resolution and low-invasive sampling of sediment pore water. To ii) develop routine-suitable methods for the characterization of metal-based engineered nanoparticles and iii) to adopt and optimize size-fractionation approaches for pore water samples of sediment depth profiles to obtain size-related information on element distributions at SWIs.
Within the first part, an available microprofiling system was combined with a novel micro sampling system equipped with newly developed sample filtration-probes. The system was thoroughly validated and applied to a freshwater sediment proving the applicability for an automatic sampling of sediment pore waters in parallel to microsensor measurements. Thereby, for the first time multi-element information for sediment depth profiles were obtained at a millimeter scale that could directly be related to simultaneously measured sediment parameters.
Due to the expected release of ENMs to the environment the aim was to develop methods that enable the investigation of fate and transport of ENMs at sediment water interfaces. Since standardized approaches are still lacking, methods were developed for the determination of the total mass concentration and the determination of the dissolved fraction of (nano)particle suspensions. Thereby, validated, routine suitable methods were provided enabling for the first time a routine-suitable determination of these two, among the most important properties regarding the analyses of colloidal systems, also urgently needed as a basis for the development of appropriate (future) risk assessments and regulatory frameworks. Based on this methodological basis, approaches were developed enabling to distinguish between dissolved and colloidal fractions of sediment pore waters. This made it possible for the first time to obtain fraction related element information for sediment depth profiles at a millimeter scale, capturing the fine scale structures and distinguishing between diffusion and colloid-mediated transport. In addition to the research oriented parts of this thesis, questions concerning the regulation of ENPs in the case of a release into aquatic systems were addressed in a separate publication (included in the Appendix) discussing the topic against the background of the currently valid German water legislation and the actual state of the research.
Refractory dry-vibratable mixes, which consist of a mineral filling material and an organic or anorganic binder system, are widely used for linings in industrial aggregates, where a very high temperature resistance is required (e.g. steel industry). During lining, all compounds are mixed and hardening is chemically or thermally initiated. The time span required for hardening is of special relevance for the application of refractory dry-vibratable mixes. It should be long enough for adequate processability, but simultaneously avoid too long downtimes. Prediction or regulation of the hardening time, necessary for an ideal processing, is currently limited. One the one hand, this is a result of the lack of an appropriate method for time-dependent determination of the harding process. On the other hand, the mechanisms responsible for this very complex process have not yet been investigated in detail and the effect of influencing factors, like the temperature or the composition of the refractory dry-vibratable mixes, are poorly documented.
To make a contribution to the understanding of the hardening mechanism of refractory dry-vibratable mixes, it was the aim of the present work, to develop an appropriate test method for the time-dependent investigation of this process. This was realized by means of the dynamic-mechanical analysis. In addition, the hardening mechanism was described for a refractory dry-vibratable mix with a binder system, which consists of a waterglass and a phosphate hardener (AlPO4 und BPO4), using supplement gravimetric investigations and determining solubility behavior of the phosphates. By means of X-ray diffraction analysis, nuclear magnetic resonance spectroscopy and scanning electron microscopy, the impact of the hardening mechanism on the crystal and amorphous structure was studied. It could be shown, that according to the two phosphates, the hardening leads to different network structures in respect of their link denseness. These structure characteristics correlate with the speed of the hardening reactions. In addition, the impact on selected properties (thermal linear deformation, temperature-dependent phase development and phase transition) could be deducted.
In the present dissertation, the structural interaction between potassium waterglass and aluminium metaphosphates (aluminium tetrametaphosphate and aluminium hexametaphosphate) were investigated in terms of the resettlement behaviour of the metaphosphates as hardening agents. The crystalline phase composition was described qualitatively and quantitatively in terms of powder diffraction patterns combined with Rietveld refinement. The amorphous phase content was determined by different spectroscopic methods (e.g. solid-state NMR, ATR-IR, and Raman spectroscopy). The solubility behaviour of the chemical hardening agents was investigated by optical emission spectroscopy and electron absorption spectroscopy. The mechanical properties of the samples were measured by three-point bending tests, resonance damping frequency analysis, and acid test. The structural framework of the chemically hardened waterglasses was explored by scanning electron microscopy method. It could be proven, that the reaction mechanism of the resettlement is strongly dependent on the structure of the aluminium metaphosphate. After the dissolution of the aluminium ions of aluminium tetrametaphosphate through the alkalic environment of the potassium waterglass, a potassium tetrametaphosphate is developed through an ion-exchange reaction with the waterglass` potassium ions. In the hexametaphosphate system, no analogous structure could be proven. Parallel to the ion-exchange reaction an incremental depolymerization of the cyclic metaphosphate structure to the final crystalline product potassium dihydrogen phosphate occurs. The drop in pH value due to the addition of the respective aluminium metaphosphate initiates a polycondensation of the potassium waterglass due to the decreasing stabilization of the waterglass. This process is increased by the depolymerization products of the metaphosphate, that remove further quantities of the alkali ions, which accelerates the polycondensation reaction due to a further decrease in pH value. The dissolved aluminium ions from the aluminium metaphosphate penetrate into the amorphous, hardening silica network and develops an alumosilicate binder matrix. Furthermore, amorphous hydrated aluminium phosphate phases develop in separate domains beside silicate, alumosilicate phases, and the crystalline phase contents e.g. potassium dihydrogenphosphate and the incomplete reacted aluminium metaphosphate. Consequently, the chemically hardened potassium waterglass binder is not necessarily homogenous. Regarding the mechanical and chemical properties, in summary with increasing alkali modulus the mechanical flexural strength, and the young modulus drop, while the chemical resistance towards acid attack, and the porosity of the samples increase. The change in the cyclic structure from aluminium tetrametaphosphate to aluminium hexametaphosphate leads to a drop in the acid resistance, the porosity of the samples, the flexural strength, and the young modulus.
Die Biopolyester Cutin und Suberin stellen hydrophobe Grenzbarrieren dar, die sich im Laufe der Evolution der Landpflanzen entwickelt haben. Cutin bildet den Hauptbestandteil der Cuticula, die den Pflanzen Schutz vor unkontrollierter Transpiration bietet. Die Einlagerung von Suberin in die Zellwände definierter Zellen des Wurzelgewebes ermöglicht eine kontrollierte Aufnahme von Wasser und Nährstoffen. Zu den wichtigsten monomeren Bestandteilen dieser biologischen Polyester gehören langkettige α,ω-Dicarbonsäuren und ω-Hydroxycarbonsäuren. Bisher wurde der mikrobielle Abbau der Makromoleküle unzureichend erforscht. Zur Entschlüsselung der Zersetzung ist es notwendig, den Kreislauf der monomeren Bestandteile im Boden zu betrachten. Hierzu eignen sich vor allem Experimente mit positionsspezifisch ¹³C -markierten α,ω-Dicarbonsäuren und ω-Hydroxycarbonsäuren, die in der vorliegenden Arbeit erstmals synthetisch zugänglich gemacht wurden. Die Synthesen umfassten Dicarbonsäuren der geradzahligen Kettenlängen C12 bis C30, deren Carboxygruppen ¹³C -markiert sind. Ebenfalls wurde die Synthese von ω-Hydroxycarbonsäuren der Kettenlängen C14, C18, C22 und C30 mit ¹³C-Markierung an der Carboxygruppe realisiert. Weitere Zielverbindungen waren ω-Hydroxycarbonsäuren der Kettenlängen C14, C15, C18, C22 und C30, deren terminales hydroxyliertes Kohlenstoffatom mit ¹³C markiert ist. Im Rahmen der durchgeführten Arbeit gelang es, alle 19 Zielcarbonsäuren erfolgreich in hohen Ausbeuten und Reinheiten darzustellen. Die Synthese der isotopenmarkierten Verbindungen erforderte die Entwicklung spezieller auf die jeweiligen Zielsubstanzen individuell angepasster Syntheserouten, die den Einbau des Kohlenstoffisotops ¹³C ermöglichten. Für alle Zielverbindungen erfolgte die Einführung des ¹³C durch die Verwendung von ¹³C -markiertem Kaliumcyanid (99 at%). Wegen der hohen Kosten des ¹³C -markierten Ausgangsstoffes wurden alle Reaktionen zunächst unter der Verwendung analoger unmarkierter Edukte optimiert. Der letzte Teil der Arbeit bestand in der Ausführung eines Inkubationsexperimentes mit den ¹³C -markierten α,ω-Dicarbonsäuren der Kettenlängen C12, C18, C22 und C30. Mittels Phospholipidfettsäure-Analyse konnte gezeigt werden, dass die ¹³C -Dicarbonsäuren zu unterschiedlichen Anteilen von verschiedenen Mikroorganismengruppen zum Aufbau von Phospholipidfettsäuren verwendet wurden. Außerdem konnte durch die Anreicherung des CO2 mit dem Isotop ¹³C nachgewiesen werden, dass die ¹³C -markierten Fettsäuren von den Mikroorganismen zur Energiegewinnung abgebaut wurden. Für zukünftige Arbeiten wäre es interessant, Ausschnitte der Cutin- und Suberinstruktur nachzubilden. Durch die Veresterung der ¹³C -markierten α,ω-Dicarbonsäuren und der ¹³C -markierten ω-Hydroxycarbonsäuren untereinander oder mit Alkoholen könnten Dimere und Oligomere hergestellt werden.
Method development for the quantification of pharmaceuticals in aqueous environmental matrices
(2021)
As a consequence of the world population increase and the resulting water scarcity, water quality is the object of growing attention. In that context, organic anthropogenic molecules — often defined as micropollutants— represent a threat for water resources. Among them, pharmaceuticals are the object of particular concerns due to their permanent discharge, their increasing consumption and their effect-based structures. Pharmaceuticals are mainly introduced in the environment via wastewater treatment plants (WWTPs), along with their metabolites and the on-site formed transformation products (TPs). Once in the aquatic environment, they partition between the different environmental compartments in particular the aqueous phase, suspended particulate matter(SPM) and biota. In the last decades, pharmaceuticals have been widely investigated in the water phase. However, extreme polar pharmaceuticals have rarely been monitored due to the lack of robust analytical methods. Moreover, metabolites and TPs have seldom been included in routine analysis methods although their environmental relevance is proven. Furthermore, pharmaceuticals have been only sporadically investigated in SPM and biota and adequate multi-residue methods are lacking to obtain comprehensive results about their occurrence in these matrices. This thesis endeavors to cover these gaps of knowledge by the development of generic multi-residue methods for pharmaceuticals determination in the water phase, SPM and biota and to evaluate the occurrence and partition of pharmaceuticals into these compartments. For a complete overview, a particular focus was laid on extreme polar pharmaceuticals, pharmaceutical metabolites and TPs. In total, three innovative multi-residue methods were developed, they include analytes covering a broad range of physico-chemical properties. First, a reliable multi-residue method was developed for the analysis of extreme polar pharmaceuticals, metabolites and TPs dissolved in water. The selected analytes covered a significant range of elevated polarity and the method would be easily expendable to further analytes. This versatility could be achieved by the utilization of freeze-drying as sample preparation and zwitterionic hydrophilic interaction liquid chromatography (HILIC) in gradient elution mode. The suitability of HILIC chromatography to simultaneously quantify a large range of micropollutants in aqueous environmental samples was thoroughly studied. Several limitations were pointed out: a very complex and time-consuming method development, a very high sensitivity with regards to modification of the acetonitrile to water ratio in the eluent or the diluent and high positive matrix effects for certain analytes. However, these limitations can be overcome by the utilization of a precise protocol and appropriate labeled internal standards. They are overmatched by the benefits of HILIC which permits the chromatographic separation of extreme polar micropollutants. Investigation of environmental samples showed elevated concentrations of the analytes in the water phase. In particular, gabapentin, metformin, guanylurea and oxypurinol were measured at concentrations in the µg/L range in surface water. Subsequently, a reliable multi-residue method was established for the determination of 57 pharmaceuticals, 47 metabolites and TPs sorbed to SPM down to the low ng/g range. This method was conceived to cover a large range of polarity in particular with the inclusion of extreme polar pharmaceuticals. The extraction procedure was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed-phase LC-MS/MS and freeze-drying HILIC-MS/MS. Pharmaceutical sorption was examined using laboratory experiments. Derived distribution coefficients Kd varied by five orders of magnitude among the analytes and confirmed a high sorption potential for positively charged and nonpolar pharmaceuticals. The occurrence of pharmaceuticals in German rivers SPM was evaluated by the investigation of annual composite SPM samples taken at four sites at the river Rhine and one site at the river Saar between the years 2005 and 2015. It revealed the ubiquitous presence of pharmaceuticals sorbed to SPM in these rivers. In particular, positively charged analytes, even very polar and nonpolar pharmaceuticals showed appreciable concentrations. For many pharmaceuticals, a distinct correlation was observed between the annual quantities consumed in Germany and the concentrations measured in SPM. Studies of composite SPM spatial distribution permitted to get hints about specific industrial discharge by comparing the pollution pattern along the river. For the first time, these results showed the potential of SPM for the monitoring of positively charged and nonpolar pharmaceuticals in surface water. Finally, a reliable and generic multi residue method was developed to investigate 35 pharmaceuticals and 28 metabolites and TPs in fish plasma, fish liver and fish fillet. For this matrix, it was very challenging to develop an adequate clean-up allowing for the sufficient separation of the matrix disturbances from the analytes. In the final method, fish tissue extraction was performed by cell disruption followed by a non-discriminating clean-up based on silica gel solid-phase extraction(SPE) and restrictive access media (RAM) chromatography. Application of the developed method to the measurement of bream and carp tissues from German rivers revealed that even polar micropollutants such as pharmaceuticals are ubiquitously present in fish tissues. In total, 17 analytes were detected for the first time in fish tissues, including 10 metabolites/TPs. The importance of monitoring metabolites and TPs in fish tissues was confirmed with their detection at similar concentrations as their parents. Liver and fillet were shown to be appropriate for the monitoring of pharmaceuticals in fish, whereas plasma is more inconvenient due to very low concentrations and collection difficulties. Elevated concentrations of certain metabolites suggest possible formation of human metabolites in fish. Measured concentrations indicate a low bioaccumulation potential for pharmaceuticals in fish tissues.