Refine
Document Type
- Study Thesis (9)
- Diploma Thesis (3)
Keywords
- Robotik (6)
- Laserscanner (2)
- 3-D-Laserscannen (1)
- 3-D-Scanning (1)
- Autonome Robotik (1)
- Autonomes Robotersystem (1)
- Bildsensor (1)
- Bildverarbeitung (1)
- Computersimulation (1)
- Dynamische Programmierung (1)
In dieser Studienarbeit wurde ein Algorithmus vorgestellt, um sich mit einem Roboter in unbekanntem Gebiet zu lokalisieren und gleichzeitig eine Karte von der Umgebung zu erstellen. Die Lokalisation des Roboters geschieht auf 2D Ebene und errechnet die (x, y, θ)T Position des Roboters zu jedem Zeitpunt t inkrementell. Der Algorithmus baut auf dem FastSLAM 2.0 Algorithmus auf und wurde abgeändert, um eine möglichst genaue Lokalisation in Gebäuden zu ermöglichen. Hierfür wurden mehrere verschieden Arten von möglichen Landmarken untersucht, verglichen und kombiniert. Schwerpunkt dieser Studienarbeit war das Einarbeiten in das Extended Kalman-Filter und die Selektion von Landmarken, die für den Einsatz in Gebäuden geeignet sind.
Der Hokuyo URG-04LX Laserscanner wird auf der mobilen Roboterplattform "Robbie" der Arbeitsgruppe Aktives Sehen zur Kartenerstellung und Kollisionsvermeidung eingesetzt. Die Navigation auf Grundlage der 2D-Scans wird den gewachsenen Anforderungen der Rescue-Arenen nicht mehr gerecht. Eine Verwendung von kommerziellen 3D-Laserscannern kommt wegen der hohen Anschaffungskosten nicht in Frage. Idee: Einsatz von mehreren günstigen 2D-Laserscannern mit unterschiedlichen Blickwinkeln oder aber die aktive Veränderung der Scanebene. Das Variieren der Scanebene erfolgt durch Schwenken oder Drehen des Laserscanners. Die Orientierung des Laserscanners im Raum liefert die dritte Dimension. Im Rahmen dieser Arbeit soll eine Plattform entwickelt werden, die es durch rotative Lagerung des Laserscanners ermöglicht, 3D-Laserscans der Umgebung zu erzeugen. Hierbei soll ein möglichst einfacher Aufbau erreicht werden, der es weiterhin ermöglicht, den Laserscanner zur Erzeugung von 2D-Karten zu benutzen. Um das Stereokamerasystem des Roboters nicht zu beeinträchtigen, wird zusätzlich ein sehr kompakter Aufbau angestrebt.
Das sichere Befahren von komplexen und unstruktierten Umgebungen durch autonome Roboter ist seit den Anfängen der Robotik ein Problem und bis heute eine Herausforderung geblieben. In dieser Studienarbeit werden drei Verfahren basierend auf 3-D-Laserscans, Höhenvarianz, der Principle Component Analysis (PCA) und Tiefenbildverarbeitung vorgestellt, die es Robotern ermöglichen, das sie umgebende Terrain zu klassifizieren und die Befahrbarkeit zu bewerten, sodass eine sichere Navigation auch in Bereichen möglich wird, die mit reinen 2-D-Laserscannern nicht sicher befahren werden können. Hierzu werden 3-D-Laserscans mit einem 2-D-Laserscanner erstellt, der auf einer Roll-Tilt-Einheit basierend auf Servos montiert ist, und gleichzeitig auch zur Kartierung und Navigation eingesetzt wird. Die einzeln aufgenommenen 2-D-Scans werden dann anhand des Bewegungsmodells der Roll-Tilt-Einheit in ein emeinsames 3-D-Koordinatensystem transformiert und mit für die 3-D-Punktwolkenerarbeitung üblichen Datenstrukturen (Gittern, etc.) und den o.g. Methoden klassifiziert. Die Verwendung von Servos zur Bewegung des 2-D-Scanners erfordert außerdem eine Kalibrierung und Genauigkeitsbetrachtung derselben, um zuverlässige Ergebnisse zu erzielen und Aussagen über die Qualität der 3-D-Scans treffen zu können. Als Ergebnis liegen drei Implementierungen vor, welche evolutionär entstanden sind. Das beschriebene Höhenvarianz-Verfahren wurde im Laufe dieser Studienarbeit von einem Principle Component Analysis basierten Verfahren, das bessere Ergebnisse insbesondere bei schrägen Untergründen und geringer Punktdichte bringt, abgelöst. Die Verfahren arbeiten beide zuverlässig, sind jedoch natürlich stark von der Genauigkeit der zur Erstellung der Scans verwendeten Hardware abhängig, die oft für Fehlklassifikationen verantwortlich war. Die zum Schluss entwickelte Tiefenbildverarbeitung zielt darauf ab, Abgründe zu erkennen und tut dies bei entsprechender Erkennbarkeit des Abgrunds im Tiefenbild auch zuverlässig.
In dieser Studienarbeit wird ein Verfahren zur Extraktion eines Oberflächenbegrenzungsmodells aus einem Tiefenbild vorgestellt. Das Modell beschreibt die im Tiefenbild dargestellte Szene durch die Geometrie und die Topologie der planaren Flächen, die in der Szene gefunden werden. Die Geometrie ist gegeben durch die Angabe der Ebenengleichungen der gefundenen Flächen sowie der 3D-Koordinaten der Eckpunkte der Polygone, die diese Flächen beschreiben. Die Informationen über die Topologie der Szene besteht aus einer Nachbarschaftsliste, die für jede Flaeche angibt, über welche Kante diese Fläche mit welcher anderen Fläche verbunden ist. Aufbauend auf einem Algorithmus zur Tiefenbildsegmentierung aus PUMA werden die Polygone bestimmt, die die Flächen der Szene beschreiben. Anschließend wird versucht, diese Polygone über Kanten und Eckpunkte zu verbinden, um ein möglichst geschlossenes Modell der Szene zu erhalten.
Mit Hilfe von Stereobildfolgen, die ein Stereokamerasystem liefert, wird versucht Informationen aus der betrachtenden Szene zu gewinnen. Die Zuordnung von Bildpunkten, die in beiden Bildern eines Stereobildpaares vorkommen und einen gemeinsamen Weltpunkt beschreiben, ermöglichen die Bestimmung einer Tiefeninformation. Das Extrahieren von Bildpunkten und deren Zuordnung sind die entscheidenen Faktoren zur Gewinnung der Tiefeninformation. Die Tiefe erlaubt es Aussagen über die Struktur der aufgenommenen Szene zu machen. Bei Übertragung dieser Idee auf das Verfolgen von gemeinsamen Weltpunkten in Bildsequenzen ist es möglich eine relative Positions- und Lageschätzung des Kamerasystems zur vorher aktuellen Position zu bestimmen. Schwierigkeiten ergeben sich aus Verdeckungen von Weltpunkten für den jeweiligen Sensor, sowie fehlerhaften Bildpunktzuordnungen. Die Geschwindigkeit des kombinierten Vorgang aus Extraktion und Punktzuordnung stellt eine weitere Anforderung an das System.
Die Zeitschrift c't stellte in der Ausgabe 02/2006 einen Bausatz für einen kleinen mobilen Roboter vor, den c't-Bot, der diese Studienarbeit inspirierte. Dieser Bausatz sollte die Basis eines Roboters darstellen, der durch eine Kamera erweitert und mit Hilfe von Bildverarbeitung in der Lage sein sollte, am RoboCupSoccer-Wettbewerb teilzunehmen. Während der Planungsphase veränderten sich die Ziele: Statt einem Fußballroboter sollte nun ein Roboter für die neu geschaffene RoboCup-Rescue-League entwickelt werden. In diesem Wettbewerb sollen Roboter in einer für sie unbekannten Umgebung selbstständig Wege erkunden, bzw. Personen in dieser Umgebung finden. Durch diese neue Aufgabenstellung war sofort klar, dass der c't-Bot nicht ausreichte, und es musste ein neuer Roboter entwickelt werden, der mittels Sensoren die Umgebung wahrnehmen, durch eine Kamera Objekte erkennen und mit Hilfe eines integrierten Computers diese Bilder verarbeiten sollte. Die Entstehung dieses Roboters ist das Thema dieser Studienarbeit.
Das Wissen über die genaue Position und Lage eines unbemannten Luftfahrzeugs spielt während der Durchführung einer autonomen Mission eine dominante Rolle. Unbemannte Luftfahrzeuge sind daher mit einer Vielzahl an Sensoren ausgestattet. Jeder dieser Sensoren leistet einen Beitrag zu diesem Ziel, wobei ein Sensor entweder eine absolute oder eine relative Angabe über den derzeitigen Aufenthaltsort oder die Fluglage ermöglicht. Alle Sensoren werden zu einer Gesamtlösung verknüpft, der Navigationslösung. Das am häufigsten eingesetzte - und auch meistens einzige - Verfahren zur absoluten Positionsbestimmung ist die Satellitennavigation. Diese ist abhängig von einer direkten Sichtlinie der mitgeführten Empfangsantenne zu den Satelliten. Falls es zu einer Unterbrechung dieser Sichtlinie kommt, ist eine genaue, absolute Positionsangabe nicht mehr möglich. Die Navigationslösung hat somit nur noch Sensoren zur Verfügung, die eine relative Positions- bzw. Lageangabe ermöglichen. Hierzu gehören das mitgeführte Magnetometer und das Inertialmesssystem. Beide unterliegen dem Phänomen der Drift. Dieses bedeutet, dass die Genauigkeit der Positions- und Lageangabe bei einem Ausfall der Satellitennavigation mit fortschreitender Zeit zunehmend unzuverlässig wird. Um diese Drift in einem bestimmten Rahmen zu kompensieren, kann ein Bildsensor verwendet werden. Dieser ermöglicht eine bildbasierte Bewegungsschätzung und stellt somit einen zusätzlichen Sensor zur Messung von relativen Lage- und Positionsänderungen dar. Ziel der Arbeit ist es, ein Verfahren zur bildbasierten Bewegungsschätzung für einen unbemannten Helikopter zu entwickeln und zu evaluieren.
Die Selbstlokalisation von Robotern ist schon seit Jahren ein aktuelles Forschungsthema, das insbesondere durch immer weiterentwickelte Techniken und Verfahren verbessert werden kann. Insbesondere finden Laserscanner in der Robotik immer häufiger Anwendung. In dieser Arbeit wird untersucht, ob durch die Fusionierung von Kamerabildern und 3D-Laserscannerdaten eine robuste und schnelle Selbstlokalisation theoretisch sowie praktisch realisierbar ist.
Ziel dieser Arbeit ist die erweiterte Modellierung des Rettungsroboters "Robbie" in der USARSim Simulationsumbegung. Es soll zusätzlich zu den bestehenden Sonarsensoren und dem Laserscanner, ein Wärmesensor angebunden werden, der Wärmebilder an die entsprechenden Robbie-Module liefert. Der bisherige 2D Laserscanner ist so zu modifizieren, dass er 3D Laserdaten erzeugt und an die Robbie-Software weiterleitet. Um die Simulation möglichst Wirklichkeitsgetreu zu gestalten, sind realitätsnahe, verrauschte Daten zu erzeugen. Ferner soll die Effizienz der Simulation getestet werden. Dazu ist mittels einer Evaluation zu untersuchen, wie das Verhalten des simulierten Roboters, im Bezug zum realen Verhalten des Roboters steht. Ein weiteres, größeres Problem stellt die Bereitstellung von Stereobildern aus der Simulationsumgebung dar. Ein spezieller Kameraserver soll installiert und in Betrieb genommen werden. Die Umwandlung der so erzeugten Bilder, in ein geeignetes Format, und deren Weiterleitung an die Robbie-GUI, ist ebenfalls zu implementieren.