Refine
Document Type
- Diploma Thesis (3)
- Study Thesis (2)
Keywords
- Bildregistrierung (1)
- Bildverarbeitung (1)
- Grafikprozessor (1)
- Graphikprozessor (1)
- Kamera (1)
- Linienkorrelationen (1)
- Modellbasiertes Tracking (1)
- Personentracking (1)
- Personenverfolgungssystem (1)
- Positionsbestimmung (1)
Das Ziel dieser Arbeit war die Verbesserung einer Positions- und Orientierungsangabe einer Kamera mit Hilfe von bildbasierten Registrierungsverfahren. Des Weiteren sollte herausgefunden werden, inwieweit eine Beschleunigung der Registrierung erreicht werden kann, wenn die Berechnung der Abstandsmaße auf den Grafikprozessor ausgelagert wird. Für das in dieser Arbeit angestrebte System sollte herausgefunden werden, ob und in welchem Maße eine Verbesserung der ursprünglichen Positionsangabe eingetreten ist. Mit dieser Arbeit wurde erreicht, dass ein lauffähiges und in zahlreichen Tests evaluiertes System unter dem Betriebssystem Linux zur Verfügung steht.
In der Bildverarbeitung werden zunehmend Algorithmen unter Verwendung von prägnanten Merkmalen implementiert. Prägnante Merkmale können sowohl für die optische Kameraposebestimmung als auch für die Kalibrierung von Stereokamerasystemen verwendet werden. Für solche Algorithmen ist die Qualität von Merkmalen in Bildern ein entscheidender Faktor. In den letzten Jahren hat sich an dieser Stelle das von D. Lowe 2004 vorgestellte SIFT-Verfahren hervorgetan. Problematisch bei der Anwendung dieses Verfahrens ist seine hohe Komplexität und der daraus resultierende hohe Rechenaufwand. Um das Verfahren zu beschleunigen, wurden bereits mehrere Implementationen veröffentlicht, die teils weiterhin ausschließlich die CPU nutzen, teils neben der CPU auch die GPU zur Berechnung bestimmter Teilbereiche des SIFT verwenden. Diese Implementationen gilt es zu hinterfragen. Ebenso ist die Qualität der Merkmale zu untersuchen, um die Verwendbarkeit von SIFT-Merkmalen für andere Bereiche der Bildverarbeitung gewährleisten zu können. Zur Visualisierung der Ergebnisse wurde eine GUI erstellt.
Im Rahmen der Arbeit wurde ein mehrstufiger Algorithmus entwickelt, der es ermöglicht, aus Bildfolgen eine Trajektorie der Kamerabewegung zu rekonstruieren. Die Kalibrierung der Kamera beruht auf dem Verfahren von Zhang und ermöglicht den Ausgleich der durch das Objektiv entstehenden radialen Verzerrung der Bilder. Die sich anschließende Detektion prägnanter Merkmale wird durch den SIFT-Operator geleistet, welcher neben subpixelgenauer Lokalisation der Merkmale zusätzlich einen stark markanten Deskriptor zu deren Beschreibung liefert. Außerdem sind die Merkmale invariant gegenüber Rotationen, was für einige mögliche Anwendungsfälle sehr relevant ist. Die Suche nach Korrespondenzen wurde auf Basis der Distance Ratio ausgeführt. Hier wurde eine komplette Formalisierung der Korrelationsbeziehung zwischen Merkmalsvektoren präsentiert, welche eindeutig eine symmetrische Beziehung zwischen SIFT-Merkmalsvektoren definiert, die den an eine Korrespondenz gestellten Ansprüchen gerecht wird. Zusätzlich wurde motiviert, warum die sonst in der Bildverarbeitung gängige Methode der Hierarchisierung zur Reduktion des Aufwands in diesem speziellen Fall zu schlechteren Inlier-Raten in den gefundenen Korrespondenzen führen kann. Anschließend wurde ein genereller Überblick über den RANSAC-Algorithmus und die aus ihm entspringenden Derivate gegeben.
Personenverfolgungssysteme bestehen oft aus teurer und meist an Personen befestigter Trackinghardware, die die Bewegungsfreiheit der Personen deutlich einschränkt. Durch die in den letzten Jahrzehnten angestiegene Rechenleistung der Computersysteme ist es möglich, Bilddaten von digitalen Video-, Foto- oder Webkameras in Echtzeit auszuwerten. Dadurch erschließen sich neue Möglichkeiten, die eine Verfolgung von Personen auch ohne die störrige Trackinghardware erlauben. In dieser Arbeit soll ein System zum Verfolgen von Personen auschließlich unter Zuhilfenahme einer Videokamera und eines Computers, also ohne Marker, entwickelt werden.