The purpose of this master thesis is to enable the Robot Lisa to process complex commands and extract the necessary information in order to perform a complex task as a sequence of smaller tasks. This is intended to be achieved by the improvement of the understanding that Lisa has of her environment by adding semantics to the maps that she builds. The complex command itself will be expected to be already parsed. Therefore the way the input is processed to become a parsed command is out of the scope of this work. Maps that Lisa builds will be improved by the addition of semantic annotations that can include any kind of information that might be useful for the performance of generic tasks. This can include (but not necessarily limited to) hierarchical classifications of locations, objects and surfaces. The processing of the command in addition to some information of the environment shall trigger the performance of a sequence of actions. These actions are expected to be included in Lisa- currently implemented tasks and will rely on the currently existing modules that perform them.
Nevertheless the aim of this work is not only to be able to use currently implemented tasks in a more complex sequence of actions but also make it easier to add new tasks to the complex commands that Lisa can perform.
Autonomous systems such as robots already are part of our daily life. In contrast to these machines, humans an react appropriately to their counterparts. People can hear and interpret human speech, and interpret facial expressions of other people.
This thesis presents a system for automatic facial expression recognition with emotion mapping. The system is image-based and employs feature-based feature extraction. This thesis analyzes the common steps of an emotion recognition system and presents state-of-the-art methods. The approach presented is based on 2D features. These features are detected in the face. No neutral face is needed as reference. The system extracts two types of facial parameters. The first type consists of distances between the feature points. The second type comprises angles between lines connecting the feature points. Both types of parameters are implemented and tested. The parameters which provide the best results for expression recognition are used to compare the system with state-of-the-art approaches. A multiclass Support Vector Machine classifies the parameters.
The results are codes of Action Units of the Facial Action Coding System. These codes are mapped to a facial emotion. This thesis addresses the six basic emotions (happy, surprised, sad, fearful, angry, and disgusted) plus the neutral facial expression. The system presented is implemented in C++ and is provided with an interface to the Robot Operating System (ROS).
The purpose of this bachelor- thesis is to teach Lisa - a robot of the university of Koblenz- AGAS department developed for participation in the @home league of the RoboCup - to draw. This requires the expansion of the robbie software framework and the operation of the robot- hardware components. Under consideration of a possible entry in the Open Challenge of the @home RoboCup, the goals are to detect a sheet of paper using Lisa- visual sensor, a Microsoft Kinect and draw on it using her Neuronics Katana robot arm. In addition, a pen mounting for the arm- gripper has to be constructed.
Outlined within this thesis are the procedures utilized to convert an image template into movement of the robotic arm, which in turn leads to drawing of a painting by the pen attached to the arm on a piece of paper detected by the visual sensor through image processing. Achieved were the parsing and drawing of an object made up of an indefinite amount of straight lines from a SVG-file onto a white sheet of paper, detected on a slightly darker surface and surrounded by various background objects or textures.
In this thesis we present an approach to track a RGB-D camera in 6DOF andconstruct 3D maps. We first acquire, register and synchronize RGB and depth images. After preprocessing we extract FAST features and match them between two consecutive frames. By depth projection we regain the z-value for the inlier correspondences. Afterwards we estimate the camera motion by 3D point set alignment between the correspondence set using least-squares. This local motion estimate is incrementally applied to a global transformation. Additionally wernpresent methods to build maps based on point cloud data acquired by a RGB-D camera. For map creation we use the OctoMap framework and optionally create a colored point cloud map. The system is evaluated with the widespread RGB-D benchmark.