Refine
Document Type
- Doctoral Thesis (2)
- Master's Thesis (1)
Keywords
- Adhäsion (1)
- Austenitischer Stahl (1)
- Bakterien (1)
- Biofilm (1)
- Biofouling (1)
- Bioreaktor (1)
- Ecotoxicity (1)
- Epifluoreszenzmikroskopie (1)
- Folie (1)
- Kunststoff (1)
SUMMARY
Buildings and infrastructures characterize the appearance of our cultural landscapes and provide essential services for the human society. However, they inevitably impact the natural environment e.g. by the structural change of habitats. Additionally, they potentially cause further negative environmental impacts due to the release of chemical substances from construction materials. Galvanic anodes and organic coatings regularly used for corrosion protection of steel structures are building materials of particular importance for the transport infrastructure. In direct contact with a water body or indirectly via the runoff after rainfall, numerous chemicals can be released into the environment and pose a risk to aquatic organisms. Up to now, there is no uniform investigation and evaluation approach for the assessment of the environmental compatibility of building products. Furthermore, galvanic anodes and organic coatings pose particular challenges for their ecotoxicological characterization due to their composition. Therefore, the objective of the presented thesis was the ecotoxicological assessment of emissions from galvanic anodes and protective coatings as well as the development of standardized assessment procedures for these materials.
The possible environmental hazard posed by the use of anodes on offshore installations was investigated on three trophic levels. To ensure a realistic and reliable evaluation, the experiments were carried out in natural seawater and under natural pH conditions. Moreover, the anode material and its main components zinc and aluminum were exposed while simulating a worst-case scenario. The anode material examined caused a weak inhibition of algae growth; no acute toxicity was observed on the luminescent bacteria and amphipods. However, an increase of aluminum and indium levels in the crustacean species was found. On the basis of these results, no direct threat has been identified for marine organisms from the use of galvanic aluminum anodes. However, an accumulation of metals in crustaceans and a resulting entry into the marine food web cannot be excluded.
The environmental compatibility of organic coating systems was exemplarily evaluated using a selection of relevant products based on epoxy resins (EP) and polyurethanes. For this purpose, coated test plates were dynamically leached over 64 days. The eluates obtained were systematically analyzed for their ecotoxicological effects (acute toxicity to algae and luminescent bacteria, mutagenic and estrogenic effects) and their chemical composition. In particular, the EP-based coatings caused significant bacterial toxicity and estrogen-like effects. The continuously released 4-tert-butylphenol was identified as a main contributor to these effects and was quantified in concentrations exceeding the predicted no effect concentration for freshwater in all samples. Interestingly, the overall toxicity was not governed by the content of 4-tert-butylphenol in the products but rather by the release mechanism of this compound from the investigated polymers. This finding indicates that an optimization of the composition can result in the reduction of emissions and thus of environmental impacts - possibly due to a better polymerization of the compounds.
Coatings for corrosion protection are exposed to rain, changes in temperature and sun light leading to a weathering of the polymer. To determine the influence of light-induced aging on the ecotoxicity of top coatings, the emissions and associated adverse effects of UV-irradiated and untreated EP-based products were compared. To that end, the investigation of static leachates was focused on estrogenicity and bacterial toxicity, which were detected in the classic microtiter plate format and in combination with thin-layer plates. Both materials examined showed a significant decrease of the ecotoxicological effects after irradiation with a simultaneous reduction of the 4-tert-butylphenol emission. However, bisphenol A and various structural analogues were detected as photolytic degradation products of the polymers, which also contributed to the observed effects. In this context, the identification of bioactive compounds was supported by the successful combination of in-vitro bioassays with chemical analysis by means of an effect-directed analysis. The presented findings provide important information to assess the general suitability of top coatings based on epoxy resins.
Within the scope of the present study, an investigation concept was developed and successfully applied to a selection of relevant construction materials. The adaptation of single standard methods allowed an individual evaluation of these products. At the same time, the suitability of the ecotoxicological methods used for the investigation of materials of unknown and complex composition was confirmed and the basis for a systematic assessment of the environmental compatibility of corrosion protection products was created. Against the background of the European Construction Products Regulation, the chosen approach can facilitate the selection of environmentally friendly products and contributes to the optimization of individual formulations by the simple comparison of different building materials e.g. within a product group.
Because silver nanoparticles (Ag NPs) are broadly applied in consumer products, their leaching will result in the continuous release of Ag NPs into the natural aquatic environment. Therefore, bacterial biofilms, as the prominent life form of microorganisms in the aquatic environment, are most likely confronted with Ag NPs as a pollutant stressor. Notwithstanding the significant ecological relevance of bacterial biofilms in aquatic systems, and though Ag NPs are expected to accumulate within these biofilms in the environment, the knowledge on the environmental and ecological impact of Ag NPs, is still lagging behind the industrial growth of nanotechnology. Consequently, aim of this thesis was to perform effect assessment of Ag NP exposure on bacterial biofilms with ambient Ag NPs concentrations and under environmentally relevant conditions. Therefore, a comprehensive set of methods was applied in this work to study if and how Ag NPs of two different sizes (30 and 70 nm) affect bacterial biofilms i.e. both monospecies biofilms and freshwater biofilms in environmentally relevant concentrations (600 - 2400 µg l-1). Within the first part of this work, a newly developed assay to test the mechanical stability of
monospecies biofilms of the freshwater model bacterium Aquabacterium citratiphilum was validated. In the first study, to investigate the impact of Ag NPs on the mechanical stability of bacterial biofilms, sublethal effects on the mechanical stability of the biofilms were observed with negative implications for biostabilization. Furthermore, as it is still challenging to monitor the ecotoxicity of Ag NPs in natural freshwater environments, a mesocosm study was performed in this work to provide the possibility for the detailed investigation of effects of Ag NPs on freshwater biofilms under realistic environmental conditions. By applying several approaches to analyze biofilms as a whole in response to Ag NP treatment, insights into the resilience of bacterial freshwater biofilms were obtained. However, as revealed by t-RFLP fingerprinting combined with phylogenetic studies based on the 16S gene, a shift in the bacterial community composition, where Ag NP-sensitive bacteria were replaced by more Ag NP-tolerant species with enhanced adaptability towards Ag NP stress was determined. This shift within the bacterial community may be associated with potential detrimental effects on the functioning of these biofilms with respect to nutrient loads, transformation and/or degradation of pollutants, and biostabilization. Overall, bringing together the key findings of this thesis, 4 general effect mechanisms of Ag NP treatment have been identified, which can be extrapolated to natural freshwater biofilms i.e. (i) the identification of Comamonadaceae as Ag NP-tolerant, (ii) a particular resilient behaviour of the biofilms, (iii) the two applied size fractions of Ag NPs exhibited similar effects independent of their sizes and their synthesis method, and (iv) bacterial biofilms show a high uptake capacity for Ag NPs, which indicates cumulative enrichment.
Heat exchangers are used for thickening of various products or desalination of saltwater. Nevertheless, they are used as cooling unit in industries. Thereby, the stainless steel heat transferring elements get in contact with microorganism containing media, such as river water or saltwater, and corrode. After at least two years of utilization the material is covered with bacterial slime called biofilm. This process is called biofouling and causes loss in efficiency and creates huge costs depending on cleaning technique and efficiency. Cleaning a heat exchanger is very expensive and time consuming. It only can be done while the device is out of business.
Changing the surface properties of materials is the best and easiest way to lengthen the initial phase of biofilm formation. This leads to less biofouling (Mogha et al. 2014).
Thin polymer films as novel materials have less costs in production than stainless steel and are easy to handle. Furthermore, they can be functionalzed easily and can be bougth in different sizes all over the world. Because of this, they can reduce the costs of cleaning techniques and lead to a longer high efficiency state of the heat exchanger. If the efficiency of the heat exchanger decreases, the thin polymer films can be replaced.
For a successful investigation of the microbial and the process engineering challenges a cooperation of Technical University of Kaiserslautern (chair of seperation science and technology) and University of Koblenz-Landau (working goup microbiology) was established.
The aim of this work was design engineering and production of a reactor for investigation of biofouling taking place on thin polymeric films and stainless steel. Furthermore, an experimental design has to be established. Several requirements have to be applied for these tasks. Therefore, a real heat exchanger is downscaled, so the process parameters are at least comparable. There are many commercial flow cell kits available. Reducing the costs by selfassembling increased the number of samples, so there is a basis for statistic analysis. In addition, fast and minimal invasive online-in-situ microscopy and Raman spectroscopy can be performed. By creating laminary flow and using a weir we implemented homogenous inflow to the reactors. Reproduceable data on biomass and cell number were created.
The assessment of biomass and cell number is well established for drinking water analysis. Epifluorescense microscopy and gravimetric determination are the basic techniques for this work, too. Differences in cell number and biomass between surface modifications and materials are quantified and statistically analysed.
The wildtype strain Escherichia coli K12 and an inoculum of 500 ml fresh water were used to describe the biofouling of the films. Thereby, we generated data with natural bacterial community in unknown media properties and data with well known media properties, so the technical relevance of the data is given.
Free surface energy and surface roughness are the first attachment hurdles for bacteria. These parameters were measured according to DIN 55660 and DIN EN ISO 4287. The materials science data were correlated with the number of cells and the biomass. This correlation acts as basal link of biofouling as biological induced parameter to the material properties. Material properties for reducing the biofouling can be prospected.
By using Raman spectroscopy as a cutting edge method future investigations could be shortened. If biomass or cell number can be linked with the spectra, new functional materials can be investigated in a short time.