43.12 Umweltchemie
Refine
Document Type
- Doctoral Thesis (2)
- Bachelor Thesis (1)
Keywords
- Bodenchemie (2)
- 1H-NMR Relaxometry (1)
- Agriculture (1)
- Bodenphysik (1)
- FTIR (1)
- Hydrogel (1)
- Interparticulate hydrogel swelling (1)
- Landwirtschaft (1)
- Microplastics (1)
- Mikroplastik (1)
Institute
The use of agricultural plastic covers has become common practice for its agronomic benefits such as improving yields and crop quality, managing harvest times better, and increasing pesticide and water use efficiency. However, plastic covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. A better understanding of the sources and fate of plastic debris in terrestrial systems has so far been hindered by the lack of adequate analytical techniques for the mass-based and polymer-selective quantification of plastic debris in soil. The aim of this dissertation was thus to assess, develop, and validate thermoanalytical methods for the mass-based quantification of relevant polymers in and around agricultural fields previously covered with fleeces, perforated foils, and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled direct plastic analyses of 50 mg of soil without any sample preparation. With polyethylene terephthalate (PET) as a preliminary model, the method limit of detection (LOD) was 0.7 g kg−1. But the missing chromatographic separation complicated the quantification of polymer mixtures. Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was developed that additionally exploited the selective solubility of polymers in specific solvents prior to analysis. By dissolving polyethylene (PE), polypropylene (PP), and polystyrene (PS) in a mixture of 1,2,4-trichlorobenzene and p-xylene after density separation, up to 50 g soil became amenable to routine plastic analysis. Method LODs were 0.7–3.3 mg kg−1, and the recovery of 20 mg kg−1 PE, PP, and PS from a reference loamy sand was 86–105%. In the reference silty clay, however, poor PS recoveries, potentially induced by the additional separation step, suggested a qualitative evaluation of PS. Yet, the new solvent-based Py-GC/MS method enabled a first exploratory screening of plastic-covered soil. It revealed PE, PP, and PS contents above LOD in six of eight fields (6% of all samples). In three fields, PE levels of 3–35 mg kg−1 were associated with the use of 40 μm thin perforated foils. By contrast, 50 μm PE films were not shown to induce plastic levels above LOD. PP and PS contents of 5–19 mg kg−1 were restricted to single observations in four fields and potentially originated from littering. The results suggest that the short-term use of thicker and more durable plastic covers should be preferred to limit plastic emissions and accumulation in soil. By providing mass-based information on the distribution of the three most common plastics in agricultural soil, this work may facilitate comparisons with modeling and effect data and thus contribute to a better risk assessment and regulation of plastics. However, the fate of plastic debris in the terrestrial environment remains incompletely understood and needs to be scrutinized in future, more systematic research. This should include the study of aging processes, the interaction of plastics with other organic and inorganic compounds, and the environmental impact of biodegradable plastics and nanoplastics.
Organic substances play an essential role for the formation of stable soil structures. In this context, their physico-chemical properties, interactions with mineral soil constituents and soil-water interactions are particu-larly important. However, the underlying mechanisms contributing to soil particle cementation by swollen or-ganic substances (hydrogels) remains unclear. Up to now, no mechanistic model is available which explains the mechanisms of interparticulate hydrogel swelling and its contribution to soil-water interactions and soil structur-al stability. This mainly results from the lack of appropriate testing methods to study hydrogel swelling in soil as well as from the difficulties of adapting available methods to the system soil/hydrogel.
In this thesis, 1H proton nuclear magnetic resonance (NMR) relaxometry was combined with various soil micro- and macrostructural stability testing methods in order to identify the contribution of hydrogel swelling-induced soil-water interactions to the structural stability of water-saturated and unsaturated soils. In the first part, the potentials and limitations of 1H NMR relaxometry to enlighten soil structural stabilization mechanism and vari-ous water populations were investigated. In the second part, 1H-NMR relaxometry was combined with rheologi-cal measurements of soil to assess the contribution of interparticulate hydrogel swelling and various polymer-clay interactions on soil-water interactions and soil structural stability in an isolated manner. Finally, the effects of various organic and mineral soil fractions on soil-water interactions and soil structural stability was assessed in more detail for a natural, agriculturally cultivated soil by soil density fractionation and on the basis of the experiences gained from the previous experiments.
The increased experiment complexity in the course of this thesis enabled to link physico-chemical properties of interparticulate hydrogel structures with soil structural stability on various scales. The established mechanistic model explains the contribution of interparticulate hydrogels to the structural stability of water-saturated and unsaturated soils: While swollen clay particles reduce soil structural stability by acting as lubricant between soil particles, interparticulate hydrogel structures increase soil structural stability by forming a flexible polymeric network which interconnects mineral particles more effectively than soil pore- or capillary water. It was appar-ent that soil structural stability increases with increasing viscosity of the interparticluate hydrogel in dependence on incubation time, soil texture, soil solution composition and external factors in terms of moisture dynamics and agricultural management practices. The stabilizing effect of interparticulate hydrogel structures further in-crease in the presence of clay particles which is attributed to additional polymer-clay interactions and the incor-poration of clay particles into the three-dimensional interparticulate hydrogel network. Furthermore, the simul-taneous swelling of clay particles and hydrogel structures results in the competition for water and thus in a mu-tual restriction of their swelling in the interparticle space. Thus, polymer-clay interactions not only increase the viscosity of the interparticulate hydrogel and thus its ability to stabilize soil structures but further reduce the swelling of clay particles and consequently their negative effects on soil structural stability. The knowledge on these underlying mechanisms enhance the knowledge on the formation of stable soil structures and enable to take appropriate management practices in order to maintain a sustainable soil structure. The additionally out-lined limitations and challenges of the mechanistic model should provide information on areas with optimization and research potential, respectively.
During olive oil production, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil properties in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive plantation in winter, spring, and summer respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a three-times lower biodegradation performance, ten-fold higher soil water repellency, and a four-fold higher content of phenolic compounds. The soil properties of winter treatments were comparable to the control, which demonstrated the recovery potential of the soil ecosystem. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Significant accumulation or leaching effects to deeper soil were not observed. Therefore, the direct application of legally restricted OMW amounts to soil is considered acceptable during the moist seasons. Further research is needed to quantify the effect of spring treatments and to gain further insight into the composition and kinetics of organic OMW constituents in the soil.