54.38 Computersicherheit
Refine
Keywords
- model-based (3)
- BPMN (1)
- Data protection (1)
- Datenschutz (1)
- GDPR (1)
- Rückverfolgbarkeit (1)
- Tracking (1)
- UML (1)
- conflict detection (1)
- data protection (1)
Data-minimization and fairness are fundamental data protection requirements to avoid privacy threats and discrimination. Violations of data protection requirements often result from: First, conflicts between security, data-minimization and fairness requirements. Second, data protection requirements for the organizational and technical aspects of a system that are currently dealt with separately, giving rise to misconceptions and errors. Third, hidden data correlations that might lead to influence biases against protected characteristics of individuals such as ethnicity in decision-making software. For the effective assurance of data protection needs,
it is important to avoid sources of violations right from the design modeling phase. However, a model-based approach that addresses the issues above is missing.
To handle the issues above, this thesis introduces a model-based methodology called MoPrivFair (Model-based Privacy & Fairness). MoPrivFair comprises three sub-frameworks: First, a framework that extends the SecBPMN2 approach to allow detecting conflicts between security, data-minimization and fairness requirements. Second, a framework for enforcing an integrated data-protection management throughout the development process based on a business processes model (i.e., SecBPMN2 model) and a software architecture model (i.e., UMLsec model) annotated with data protection requirements while establishing traceability. Third, the UML extension UMLfair to support individual fairness analysis and reporting discriminatory behaviors. Each of the proposed frameworks is supported by automated tool support.
We validated the applicability and usability of our conflict detection technique based on a health care management case study, and an experimental user study, respectively. Based on an air traffic management case study, we reported on the applicability of our technique for enforcing an integrated data-protection management. We validated the applicability of our individual fairness analysis technique using three case studies featuring a school management system, a delivery management system and a loan management system. The results show a promising outlook on the applicability of our proposed frameworks in real-world settings.
Nowadays, almost any IT system involves personal data processing. In
such systems, many privacy risks arise when privacy concerns are not
properly addressed from the early phases of the system design. The
General Data Protection Regulation (GDPR) prescribes the Privacy by
Design (PbD) principle. As its core, PbD obliges protecting personal
data from the onset of the system development, by effectively
integrating appropriate privacy controls into the design. To
operationalize the concept of PbD, a set of challenges emerges: First, we need a basis to define privacy concerns. Without such a basis, we are not able to verify whether personal data processing is authorized. Second, we need to identify where precisely in a system, the controls have to be applied. This calls for system analysis concerning privacy concerns. Third, with a view to selecting and integrating appropriate controls, based on the results of system analysis, a mechanism to identify the privacy risks is required. Mitigating privacy risks is at the core of the PbD principle. Fourth, choosing and integrating appropriate controls into a system are complex tasks that besides risks, have to consider potential interrelations among privacy controls and the costs of the controls.
This thesis introduces a model-based privacy by design methodology to handle the above challenges. Our methodology relies on a precise definition of privacy concerns and comprises three sub-methodologies: model-based privacy analysis, modelbased privacy impact assessment and privacy-enhanced system design modeling. First, we introduce a definition of privacy preferences, which provides a basis to specify privacy concerns and to verify whether personal data processing is authorized. Second, we present a model-based methodology to analyze a system model. The results of this analysis denote a set of privacy design violations. Third, taking into account the results of privacy analysis, we introduce a model-based privacy impact assessment methodology to identify concrete privacy risks in a system model. Fourth, concerning the risks, and taking into account the interrelations and the costs of the controls, we propose a methodology to select appropriate controls and integrate them into a system design. Using various practical case studies, we evaluate our concepts, showing a promising outlook on the applicability of our methodology in real-world settings.
Software systems have an increasing impact on our daily lives. Many systems process sensitive data or control critical infrastructure. Providing secure software is therefore inevitable. Such systems are rarely being renewed regularly due to the high costs and effort. Oftentimes, systems that were planned and implemented to be secure, become insecure because their context evolves. These systems are connected to the Internet and therefore also constantly subject to new types of attacks. The security requirements of these systems remain unchanged, while, for example, discovery of a vulnerability of an encryption algorithm previously assumed to be secure requires a change of the system design. Some security requirements cannot be checked by the system’s design but only at run time. Furthermore, the sudden discovery of a security violation requires an immediate reaction to prevent a system shutdown. Knowledge regarding security best practices, attacks, and mitigations is generally available, yet rarely integrated part of software development or covering evolution.
This thesis examines how the security of long-living software systems can be preserved taking into account the influence of context evolutions. The goal of the proposed approach, S²EC²O, is to recover the security of model-based software systems using co-evolution.
An ontology-based knowledge base is introduced, capable of managing common, as well as system-specific knowledge relevant to security. A transformation achieves the connection of the knowledge base to the UML system model. By using semantic differences, knowledge inference, and the detection of inconsistencies in the knowledge base, context knowledge evolutions are detected.
A catalog containing rules to manage and recover security requirements uses detected context evolutions to propose potential co-evolutions to the system model which reestablish the compliance with security requirements.
S²EC²O uses security annotations to link models and executable code and provides support for run-time monitoring. The adaptation of running systems is being considered as is round-trip engineering, which integrates insights from the run time into the system model.
S²EC²O is amended by prototypical tool support. This tool is used to show S²EC²O’s applicability based on a case study targeting the medical information system iTrust.
This thesis at hand contributes to the development and maintenance of long-living software systems, regarding their security. The proposed approach will aid security experts: It detects security-relevant changes to the system context, determines the impact on the system’s security and facilitates co-evolutions to recover the compliance with the security requirements.
Retrospektive Analyse der Ausbreitung und dynamische Erkennung von Web-Tracking durch Sandboxing
(2018)
Aktuelle quantitative Analysen von Web-Tracking bieten keinen umfassenden Überblick über dessen Entstehung, Ausbreitung und Entwicklung. Diese Arbeit ermöglicht durch Auswertung archivierter Webseiten eine rückblickende Erfassung der Entstehungsgeschichte des Web-Trackings zwischen den Jahren 2000 und 2015. Zu diesem Zweck wurde ein geeignetes Werkzeug entworfen, implementiert, evaluiert und zur Analyse von 10000 Webseiten eingesetzt. Während im Jahr 2005 durchschnittlich 1,17 Ressourcen von Drittparteien eingebettet wurden, zeigt sich ein Anstieg auf 6,61 in den darauffolgenden 10 Jahren. Netzwerkdiagramme visualisieren den Trend zu einer monopolisierten Netzstruktur, in der bereits ein einzelnes Unternehmen 80 % der Internetnutzung überwachen kann.
Trotz vielfältiger Versuche, dieser Entwicklung durch technische Maßnahmen entgegenzuwirken, erweisen sich nur wenige Selbst- und Systemschutzmaßnahmen als wirkungsvoll. Diese gehen häufig mit einem Verlust der Funktionsfähigkeit einer Webseite oder mit einer Einschränkung der Nutzbarkeit des Browsers einher. Mit der vorgestellten Studie wird belegt, dass rechtliche Vorschriften ebenfalls keinen hinreichenden Schutz bieten. An Webauftritten von Bildungseinrichtungen werden Mängel bei Erfüllung der datenschutzrechtlichen Pflichten festgestellt. Diese zeigen sich durch fehlende, fehlerhafte oder unvollständige Datenschutzerklärungen, deren Bereitstellung zu den Informationspflichten eines Diensteanbieters gehören.
Die alleinige Berücksichtigung klassischer Tracker ist nicht ausreichend, wie mit einer weiteren Studie nachgewiesen wird. Durch die offene Bereitstellung funktionaler Webseitenbestandteile kann ein Tracking-Unternehmen die Abdeckung von 38 % auf 61 % erhöhen. Diese Situation wird durch Messungen von Webseiten aus dem Gesundheitswesen belegt und aus technischer sowie rechtlicher Perspektive bewertet.
Bestehende systemische Werkzeuge zum Erfassen von Web-Tracking verwenden für ihre Messung die Schnittstellen der Browser. In der vorliegenden Arbeit wird mit DisTrack ein Framework zur Web-Tracking-Analyse vorgestellt, welches eine Sandbox-basierte Messmethodik verfolgt. Dies ist eine Vorgehensweise, die in der dynamischen Schadsoftwareanalyse erfolgreich eingesetzt wird und sich auf das Erkennen von Seiteneffekten auf das umliegende System spezialisiert. Durch diese Verhaltensanalyse, die unabhängig von den Schnittstellen des Browsers operiert, wird eine ganzheitliche Untersuchung des Browsers ermöglicht. Auf diese Weise können systemische Schwachstellen im Browser aufgezeigt werden, die für speicherbasierte Web-Tracking-Verfahren nutzbar sind.