Institut für Umweltwissenschaften
Refine
Year of publication
Document Type
- Doctoral Thesis (23)
- Article (1)
- Conference Proceedings (1)
- Habilitation (1)
- Master's Thesis (1)
Keywords
- Biodiversität (3)
- Pestizid (3)
- agriculture (2)
- risk assessment (2)
- 1H-NMR Relaxometry (1)
- Agrarlandschaft (1)
- Amphibia (1)
- Aquatic Ecotoxicology (1)
- Bedrohte Tiere (1)
- Benetzung (1)
Institute
In the last decades, it became evident that the world is facing an unprecedented, human-induced global biodiversity crisis with amphibians being one of the most threatened species groups. About 41% of the amphibian species are classified as endangered by the IUCN, but even in amphibian species that are listed as "least concern", population declines can be observed on a local level. With land-use change and agrochemicals (i.e. pesticides), two of the main drivers for this amphibian decline are directly linked to intensive agriculture, which is the dominant landscape type in large parts of Europe. Thus, understanding the situation of amphibians in the agricultural landscape is crucial for conservation measures. In the present thesis, I investigated the effects of viticulture on amphibian populations around Landau in der Pfalz (Germany) in terms of habitat use, pesticide exposure, biometric traits as well as genetic and age structure. From the perspective of amphibians, land-use change means usually the destruction of habitats in agricultural landscapes, which often leads to landscape fragmentation. Thus, I followed the question if also vineyards lead to the fragmentation of the landscape and if pesticides that are frequently used in viticulture have to be considered as a factor too, so if there is a chemical landscape fragmentation. Using telemetry, I could show that common toads (Bufo bufo) can be found directly in vineyards, but that they tend to avoid them as habitat. Analysing the genetic structure of common frogs (Rana temporaria) revealed that vineyards have to be considered as a barrier for amphibians. To identify if pesticides contribute to the resulting landscape fragmentation, I conducted an arena choice experiment in the laboratory in which I found evidence for an avoidance of pesticide-contaminated soil. Such an avoidance could be one of the underlying reasons for a potential chemical landscape fragmentation. By combining telemetry data with information about pesticide applications from local wine growers, I could show that a large part of the common toads is likely to come in contact with pesticides. Further, I demonstrated that the agricultural landscape, probably due to the application of pesticides, can have negative effects on the reproduction capacity of common toads. By studying palmate newts (Lissotriton helveticus) I found that adult newts from agricultural ponds are smaller than those from forest ponds. As I did not find differences in the age structure and growth, these differences might be carry-over effects from earlier life stages. While agricultural ponds might be suitable habitats for adult palmate newts, the potential carry-over effect indicates suboptimal conditions for larvae and/or juveniles. I conclude that the best management measure for sustaining amphibians in the agricultural landscape would be a heterogeneous cultural landscape with a mosaic of different habitat patches that work without or at least a reduced amount of pesticides. Green corridors between populations and different habitats would allow migrating individuals to avoid agricultural and thus pesticide-contaminated areas. This would reduce the pesticide exposure risk of amphibians, while preventing the fragmentation of the landscape and thus the isolation of populations.
This thesis was motivated by the need to advance the knowledge on the variability and dynamics of energy fluxes in lakes and reservoirs, as well as about the physical processes that regulate the fluxes at both the air and water side of the air-water interface.
In the first part, I re-examine how mechanical energy, resulting from its major source – the vertical wind energy flux - distributes into the various types of water motions, including turbulent flows and surface and internal waves. Although only a small fraction of the wind energy flux from the atmosphere is transferred to the water, it is crucial for physical, biogeochemical and ecological processes in lentic ecosystems. Based on extensive air- and water-side measurements collected at two small water bodies (< 10 km2), we estimated the energy fluxes and energy content in surface and in internal waves. Overall, the estimated energy fluxes and energy content agree well with results reported for larger water bodies, suggesting that the energetics driving the water motions in enclosed basins is similar, independently of the basin size. Our findings highlight the importance of the surface waves that receive the largest fraction of the wind energy flux, which strongly nonlinearly increases for wind speeds exceeding 3 m s-1. We found that the existing parameterization of the wave height as a function of wind speed and fetch length did not reproduce the measured wave amplitude in lakes. On average, the highest energy content was observed in basin-scale internal waves, together with high-frequency internal waves exhibiting seasonal variability and varies among the aquatic systems. During our analysis, we discovered the diurnal variability of the energy dissipation rates in the studied lake, suggesting biogenic turbulence generation, which appears to be a widespread phenomenon in lakes and reservoirs.
In the second part of the thesis, I addressed current knowledge gaps related to the bulk transfer coefficients (also known as the drag coefficient, the Stanton number and the Dalton number), which are of a particular importance for the bulk estimation of the surface turbulent fluxes of momentum, sensible and latent heat in the atmospheric boundary layer. Their inaccurate representation may lead to significant errors in flux estimates, affecting, for example, the weather and climate predictions or estimations of the near-surface current velocities in lake hydrodynamic models. Although the bulk transfer coefficients have been extensively studied over the past several decades (mainly in marine and large-lake environments), there has been no systematic analysis of measurements obtained at lakes of different size. A significant increase of the transfer coefficients at low wind speeds (< 3 m s-1) has been observed in several studies, but, to date, it has remained unexplained. We evaluated
the bulk transfer coefficients using flux measurements from 31 lakes and reservoirs. The estimates were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients increased substantially at low wind speeds, which was found to be associated with the presence of gusts and capillary waves (except the Dalton number). We found that the Stanton number is systematically higher than the Dalton number. This challenges the assumption made in the Bowen-ratio method, which is widely used for estimating evaporation rates from micrometeorological measurements. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and the Stanton number due to wind gustiness and capillary wave roughness while the Dalton number could be considered as constant at all wind speeds.
In the third part of the thesis, I address the key drivers of the near-surface turbulence that control the gas exchange in a large regulated river. As all inland waters, rivers are an important natural source of greenhouse gases. The effects of the widespread alteration and regulation of river flow for human demands on gas exchange is largely unknown. In particular, the near-surface turbulence in regulated rivers has been rarely measured and its drivers have not been identified. While in lakes and reservoirs, near-surface turbulence is mainly related to atmospheric forcing, in shallow rivers and streams it is generated by bottom friction of the gravity-forced flow. The studied large regulated river represents a transition between these two cases. Atmospheric forcing and gravity were the dominant drivers of the near-surface turbulence for a similar fraction of the measurement period. Based on validated scalings, we derived a simple model for estimating the relative contributions of wind and bottom friction to near-surface turbulence in lotic ecosystems with different flow depths. Large diel variability in the near-surface energy dissipation rates due to flow regulation leads to the same variability in gas exchange. This suggests that estimates of gas fluxes from rivers are biased by measurements performed predominantly during daytime.
In addition, the novelty in all the analyses described above is the use of the turbulent surface fluxes measured directly by the eddy-covariance technique – at the moment of writing, the most advanced method. Overall, this thesis is of a potential interest for a broad range of scientific disciplines, including limnology, micrometeorology and open channel hydraulics.
The decline of biodiversity can be observed worldwide and its consequences are alarming. It is therefore crucial that nature must be protected and, where possible, restored. A wide variety of different project options are possible. Yet in the context of limited availability of resources, the selection of the most efficient measures is increasingly important. For this purpose, there is still a lack of information. This pertains, as outlined in the next paragraph, in particular, to information at different scales of projects.
Firstly, there is a lack of information on the concrete added value of biodiversity protection projects. Secondly, there is a lack of information on the actual impacts of such projects and on the costs and benefits associated with a project. Finally, there is a lack of information on the links between the design of a project, the associated framework conditions and the perception of specific impacts. This paper addresses this knowledge gap by providing more information on the three scales by means of three empirical studies on three different biodiversity protection projects in order to help optimize future projects.
The first study “Assessing the trade-offs in more nature-friendly mosquito control in the Upper Rhine region” examines the added value of a more nature-friendly mosquito control in the Upper Rhine Valley of Germany using a contingent valuation method. Recent studies show that the widely used biocide Bti, which is used as the main mosquito control agent in many parts of the world, has more negative effects on nature than previously expected. However, it is not yet clear whether the population supports a more nature-friendly mosquito control, as such an adaptation could potentially lead to higher nuisance. This study attempts to answer this question by assessing the willingness to pay for an adapted mosquito control strategy that reduces the use of Bti, while maintaining nuisance protection within settlements. The results show that the majority of the surveyed population attaches a high value to a more nature-friendly mosquito control and is willing to accept a higher nuisance outside of the villages.
The second study “Inner city river restoration projects: the role of project components for acceptance” examines the acceptance of a river restoration project in Rhineland-Palatinate, Germany. Despite much effort, many rivers worldwide are still in poor condition. Therefore, a rapid implementation of river restoration projects is of great importance. In this context, acceptance by society plays a fundamental role, however, the factors determining such acceptance are still poorly understood. In particular, the complex interplay between the acceptance or rejection of specific project components and the acceptance of the overall project require further exploration. This study addresses this knowledge gap by assessing the acceptance of the project, its various ecological and social components, and the perception of real and fictitious costs as well as the benefits of the components. Our findings demonstrate that while acceptance of the overall project is generally rather high, many respondents reject one or more of the project's components. Complementary social project components, like a playground, find less support than purely ecological components. Overall, our research shows that complementary components may increase or decrease acceptance of the overall project. We, furthermore, found that differences in the acceptance of the individual components depend on individual concerns, such as perceived flood risk, construction costs, expected noise and littering as well as the quality of communication, attachment to the site, and the age of the respondents.
The third study “What determines preferences for semi-natural habitats in agrarian landscapes? A choice-modelling approach across two countries using attributes characterizing vegetation” investigates people's aesthetic preferences for semi-natural habitats in agricultural landscapes. The EU-Common Agricultural Policy promotes the introduction of woody and grassy semi-natural habitats (SNH) in agricultural landscapes. While the benefits of these structures in terms of regulating ecosystem services are already well understood, the effects of SNH on visual landscape quality is still not clear. This study investigates the factors determining people’s visual preferences in the context of grassy and woody SNH elements in Swiss and Hungarian landscapes using picture-based choice experiments. The results suggest that respondents’ choices strongly depend on specific vegetation characteristics that appear and disappear over the year. In particular, flowers as a source of colours and green vegetation as well as ordered structure and the proportion of uncovered soil in the picture play an important role regarding respondents’ aesthetic perceptions of the pictures.
The three empirical studies can help to make future projects in the study areas of biodiversity protection more efficient. While this thesis highlights the importance of exploring biodiversity protection projects at different scales, further analyses of the different scales of biodiversity protection projects are needed to provide a sound basis to develop guidance on identifying the most efficient biodiversity protection projects.
The growing numbers of breeding rooks (Corvus frugilegus) in the city of Landau (Rhineland- Palatinate, Germany) increase the potential for conflict between rooks and humans, which is mainly associated with noise and faeces. Therefore, the aim of this work is a better understanding of the breeding tree selection of the rook in order to develop options for action and management in the future.
Part I of this thesis provides general background information on the rook and includes mapping of the rookeries in the Anterior Palatinate and South Palatinate including Landau in the year 2020. That mapping revealed that the number of rural colonies has decreased, while the number of urban colonies has increased in the study area in the last few years. In line with current literature, tree species and tree size were important criteria for breeding tree selection. However, the mapping showed that additional factors must be important as well.
Therefore, as rooks seem to often breed along traffic axes, Part II of this thesis examines how temperature, artificial light and noise, which are all linked to traffic axes, affect the breeding tree selection of the rook in the city of Landau. The following three hypotheses are developed: (1) manually selected breeding trees (Bm) have a warmer microclimate than manually selected non-breeding trees (Nm) or randomly selected non-breeding trees (Nr), (2) Bm are exposed to a higher light level than Nm or Nr and (3) Bm are exposed to a higher noise level than Nm or Nr. To test these hypotheses, 15 Bm, 13 Nm and 16 Nr are investigated.
The results show that Bm were exposed to more noise than both types of non-breeding trees (μBm, noise = 36.52481 dB, μNm, noise = 31.27229 dB, μNr, noise = 29.17417 dB) where the difference between Bm and Nr was significant. In addition, there was a tendency for Bm to be exposed to less light (μBm, light = 0.356 lx) than Nm (μNm, light = 0.4107692 lx) and significantly less light than Nr (μNr, light = 1.995 lx), while temperature did not differ between the groups (μBm, temp = 16.90549 °C, μNm, temp = 16.93118 °C, μNr, temp = 17.28639 °C).
This study shows for the first time that rooks prefer trees which are exposed to low light levels and high noise levels, i.e. more intense traffic noise, for breeding. It can only be speculated that the cause of this is lower enemy pressure at such sites. The fact that temperature does not seem to have any influence on breeding tree selection may be due to only small temperature differences at nest height, which might be compensated by breeding behaviour. Consequently, in the long term one management approach could be to divert traffic from inner-city areas, especially schools and hospitals, to bypasses. If tree genera suitable for rooks, such as plane trees, are planted along the bypasses, those sites could provide suitable alternative habitats to inner-city breeding locations, which become less attractive for breeding due to noise reduction. In the short term in addition to locally implemented repellent measures the most effective approach is to strengthen rook acceptance among the population. However, further research is needed to verify the results of this thesis and to gain further insights into rook breeding site selection in order to develop effective management measures.
Agricultural plastic covers made from polyethylene (PE) and polypropylene (PP) provide increased yields and an improved crop quality. However, such covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. To scrutinize this, we randomly sampled 240 topsoil cores (0–5 cm) from eight fields which were covered with fleeces, perforated foils, and plastic mulches for less than 2 years. Samples from the field periphery (50 m perimeter) served as a reference. Visual plastic debris > 2 mm was analyzed by Fourier transform infrared spectroscopy. Smaller, soil-associated plastic debris was dispersed from 50 g of fine soil (≤ 2 mm) using sodium hexametaphosphate solution and density-separated with saturated NaCl solution. The collected PE, PP, and polystyrene (PS) debris was selectively dissolved in a mixture of 1,2,4-trichlorobenzene and p-xylene at 150 °C and quantified by pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS). We counted six PE and PS fragments > 2 mm in two out of eight fields. By contrast, Py-GC/MS detected PE, PP, and PS contents in the fine soil of six fields (6 % of all samples). In three fields, PE levels of 3–35 mg kg−1 were potentially associated with the use of thinner and less durable perforated foils (40 µm thickness). This was slightly more pronounced at field edges where the plastic covers are turned and weighed down. By contrast, 50 µm thick PE films were not shown to emit any plastic debris. PP contents of 5–10 mg kg−1 were restricted to single observations in the field centers of three sites. At one site, we found expanded PS particles > 2 mm that concurred with elevated PS levels (8–19 mg kg−1) in the fine soil. Both PP and PS were distributed indistinctly across sites so that their source remained unresolved. In addition, the extent to which plastic contents of up to 7 mg kg−1 in the field periphery of some sites were attributed to wind drift from the covered fields or from external sources needs to be investigated in future studies. Our results suggest that the short-term use of thicker and more durable plastic covers should be preferred over thinner or perforated films to limit plastic emissions and accumulation in soil.
Vertebrate biodiversity is rapidly decreasing worldwide with amphibians being the most endangered vertebrate group. In the EU, 21 of 89 amphibian species are recognized as being endangered. The intensively used European agricultural landscape is one of the major causes for these declines. As agriculture represents an essential habitat for amphibians, exposure to pesticides can have adverse effects on amphibian populations. Currently, the European risk assessment of pesticides for vertebrates requires specific approaches for fish regarding aquatic vertebrate toxicity and birds as well as mammals for terrestrial vertebrate toxicity but does not address the unique characteristics of amphibians. Therefore, the overall goal of this thesis was to investigate the ecotoxicological effects of pesticides on Central European anuran amphibians. For this, effects on aquatic and terrestrial amphibian life stages as well as on reproduction were investigated. Then, in anticipation of a risk assessment of pesticides for amphibians, this thesis discussed potential regulatory risk assessment approaches.
For the investigated pesticides and amphibian species, it was observed that the acute aquatic toxicity of pesticides can be addressed using the existing aquatic risk assessment approach based on fish toxicity data. However, lethal as well as sublethal effects were observed in terrestrial juveniles after dermal exposure to environmentally realistic pesticide concentrations, which cannot be covered using an existing risk assessment approach. Therefore, pesticides should also be evaluated for potential terrestrial toxicity using risk assessment tools before approval. Additionally, effects of co-formulants and adjuvants of pesticides need specific consideration in a future risk assessment as they can increase toxicity of pesticides to aquatic and terrestrial amphibian stages. The chronic duration of combined aquatic and terrestrial exposure was shown to affect amphibian reproduction. Currently, such effects cannot be captured by the existing risk assessment as data involving field scenarios analysing effects of multiple pesticides on amphibian reproduction are too rare to allow comparison to data of other terrestrial vertebrates such as birds and mammals. In the light of these findings, future research should not only address acute and lethal effects, but also chronic and sublethal effects on a population level. As pesticide exposure can adversely affect amphibian populations, their application should be considered even more carefully to avoid further amphibian declines. Overall, this thesis emphasizes the urgent need for a protective pesticide risk assessment for amphibians to preserve and promote stable amphibian populations in agricultural landscapes.
Perfluorocarboxylic acids (PFCA) are substances of anthropogenic origin and have been used for several decades. These compounds are a new class of environmental pollutants. Their high surface activity, thermal stability, amphipathicity and weak intermolecular interactions lead to persistence and bioaccumulation. Therefore, there is a great need for reliable analytical methods for detecting the presence and determination of concentration in both environmental samples and everyday products. GC-MS is a cost-effective alternative and supplement to established LC-MS/MS methods. The greatest challenge in the method development is the derivatization reaction. Many of the previously published derivatization reactions for PFCA are time consuming and require high reaction temperatures or toxic reagents.
In the present dissertation, two new derivatization reactions for PFCA have been developed and optimized. The first part of the thesis shows the development and optimization of the reaction with triethylsilanol in water. In addition to optimizing the reaction, classical solid-phase extraction was modified to simplify the sample preparation.
In the second part of the work, the reaction products of perfluorooctanoic acid (PFOA) with N,N-dimethylformamide dimethyl acetal (DMF-DMA) and -diethyl acetal (DMF-DEA) were identified. From these measurements, it follows that both DMF-DMA and DMF-DEA in the presence of PFOA form an iminium cation, which leads to salt formation. This PFOA salt react further in the GC injector and a corresponding amine is produced.
In the last part of the thesis, an analytical method based on the DMF-DMA reaction was developed. The matrix effects have been described in detail. The method has been successfully applied for three different types of samples: dental floss, textiles and sewage sludge. The results were verified by LC-MS/MS analysis in an external laboratory. The differences between the PFCA values for a spiked sample measured by GC-MS and LC-MS/MS were less than 10%.
Stream ecosystems are one of the most threatened ecosystems worldwide due to their exposure to diverse anthropogenic stressors. Pesticides appear to be the most relevant stressor for agricultural streams. Due to the current mismatch of modelled and measured pesticide concentrations, monitoring is necessary to inform risk assessment or improve future pesticide approvals. Knowing if biotic stress responses are similar across large scales and long time frames could ultimately help in estimating protective stressor thresholds.
This thesis starts with an overview of entry pathways of pesticides to streams as well as the framework of current pesticide monitoring and gives an outline of the objectives of the thesis. In chapter 2, routine monitoring data based on grab sampling from several countries is analysed to identify the most frequently occurring pesticide mixtures. These mixtures are comprised of relatively low numbers of pesticides, of which herbicides are dominating. The detected pesticide mixtures differ between regions and countries, due to differences in the spectrum of analysed compounds and limits of quantification. Current routine monitoring does not include sampling during pesticide peaks associated with heavy rainfall events which likely influences the detected pesticide mixtures. In chapter 3, sampling rates of 42 organic pesticides for passive sampling are provided together with recommendations for the monitoring of field-relevant peaks. Using this information, in chapter 4 a pesticide gradient is established in an Eastern European region where agricultural intensity adjacent to sampled streams ranges from low to high. In contrast to current routine monitoring, rainfall events were sampled and a magnitude of pesticides were analysed. This led to the simultaneous detection of numerous pesticides of which one to three drive the pesticide toxicity. The toxicity, however, showed no relationship to the agricultural intensity. Using microcosms, the stress responses of fungal communities, the hyphomycetes, and the related ecosystem function of leaf decomposition, is investigated in chapter 5. Effects of a field-relevant fungicide mixture are examined across three biogeographical regions for three consecutive cycles of microbial leaf colonisation and decomposition. Despite different initial communities, stress responses as well as recoveries were similar across biogeographical regions, indicating a general pattern.
Overall, this thesis contributes to an improved understanding of occurrence and concentrations of pesticides mixtures in streams, their monitoring and impact on an ecosystem function. We showed that estimated pesticide toxicities reach levels that affect non-target organisms and thereby potentially whole ecosystems. Routine monitoring, however, likely underestimates the threat by pesticides. Effects leading to a loss in biodiversity or functions in streams ecosystems can be reduced by reassessing approved pesticides with ongoing targeted monitoring and increased knowledge of effects caused by these pesticides.
Environmental processes transforming inorganic nanoparticles: implications on aquatic invertebrates
(2020)
Engineered inorganic nanoparticles (EINPs) are produced and utilized on a large scale and will end up in surface waters. Once in surface waters, EINPs are subjected to transformations induced by environmental processes altering the particles’ fate and inherent toxicity. UV irradiation of photoactive EINPs is defined as one effect-inducing pathway, leading to the formation of reactive oxygen species (ROS), increasing EINP toxicity by exerting oxidative stress in aquatic life. Simultaneously, UV irradiation of photoactive EINP alters the toxicity of co-occurring micropollutants (e.g. pesticides) by affecting their degradation. The presence of natural organic matter (NOM) reduces the agglomeration and sedimentation of EINPs, extending the exposure of pelagic species, while delaying the exposure of benthic species living in and on the sediment, which is suggested as final sink for EINPs. However, the joint impact of NOM and UV irradiation on EINP-induced toxicity, but also EINP-induced degradation of micropollutants, and the resulting risk for aquatic biota, is poorly understood. Although potential effects of EINPs on benthic species are increasingly investigated, the importance of exposure pathways (waterborne or dietary) is unclear, along with the reciprocal pathway of EINPs, i.e. the transport back from aquatic to terrestrial ecosystems. Therefore, this thesis investigates: (i) how the presence of NOM affects the UV-induced toxicity of the model EINP titanium dioxide (nTiO2) on the pelagic organism Daphnia magna, (ii) to which extent UV irradiation of nTiO2 in the presence and absence of NOM modifies the toxicity of six selected pesticides in D. magna, (iii) potential exposure pathway dependent effects of nTiO2 and silver (nAg) EINPs on the benthic organism Gammarus fossarum, and (iv) the transport of nTiO2 and gold EINPs (nAu) via the merolimnic aquatic insect Chaetopteryx villosa back to terrestrial ecosystems. nTiO2 toxicity in D. magna increased up to 280-fold in the presence of UV light, and was mitigated by NOM up to 12-fold. Depending on the pesticide, UV irradiation of nTiO2 reduced but also enhanced pesticide toxicity, by (i) more efficient pesticide degradation, and presumably (ii) formation of toxic by-products, respectively. Likewise, NOM reduced and increased pesticide toxicity, induced by (i) protection of D. magna against locally acting ROS, and (ii) mitigation of pesticide degradation, respectively. Gammarus’ energy assimilation was significantly affected by both EINPs, however, with distinct variation in direction and pathway dependence between nTiO2 and nAg. EINP presence delayed C. villosa emergence by up to 30 days, and revealed up to 40% reduced lipid reserves, while the organisms carried substantial amounts of nAu (~1.5 ng/mg), and nTiO2 (up to 2.7 ng/mg). This thesis shows, that moving test conditions of EINPs towards a more field-relevant approach, meaningfully modifies the risk of EINPs for aquatic organisms. Thereby, more efforts need to be made to understand the relative importance of EINP exposure pathways, especially since a transferability between different types of EINPs may not be given. When considering typically applied risk assessment factors, adverse effects on aquatic systems might already be expected at currently predicted environmental EINP concentrations in the low ng-µg/L range.
The loss of biodiversity is recognised on a global scale and also in the anthropogenic landscapes used for agriculture, now covering almost 50% of the global terrestrial land surface. In agriculture pesticides, biologically active chemicals are deliberately distributed to control pests, disease and weeds in the cropped areas. The quantification of remaining semi-naturals structures such as field margins and hedges is a prerequisite to understand the impact of pesticides on biodiversity, since these structures represent habitats for many organisms in agricultural landscapes. The presence of organisms in these habitats and crops is required to obtain an estimate of their potential pesticide exposure. In this text I provide studies on animal groups so far not addressed in risk assessment procedures for the regulation of pesticides such as amphibians, moths and bats. For all groups it becomes apparent that they are present in agricultural landscapes and potentially coincide with pesticide applications indicating a risk. Risk quantification also requires data on the sensitivity of organisms and here data for plants, amphibians and bees are presented. Effects translating to community level were studied for herbicide, insecticide and fertiliser effects in a natural system. After three years the treatments resulted in simplified plant communities with lower species numbers and a reduction in flowering plants. This reduction of flowers is used as an example for an indirect effect and was especially obvious for the effect of an herbicide on the common buttercup. Sublethal herbicide effects for a plant translated in an impact on feeding caterpillars, indicating a reduction in food quality. Insecticide inputs realistic for field margins also reduced moth pollination of white champion flowers by 30%. These indirect effects by distortions of food web characteristics are playing a critical role to understand declines in organism groups, however so far are not accounted for in pesticide risk assessment schemes. The current intense use of pesticides in agriculture and their inherent toxicity may lead to a chemical landscape fragmentation, where populations may not be connected anymore. Source-sink dynamics are important ecological processes and as a final result not only population size but also genetic population structure might be affected. Including potential pesticide impacts as costs in a model for amphibians migrating to breeding ponds in vineyards in Rhineland-Palatinate indicated the isolation of investigated populations. A first validation by analyzing the population structure of the European common frog confirmed the model prediction for some sites. For the regulation of pesticides in Europe a risk assessment is required and for the organisms of the terrestrial habitat a multitude of guidance documents is in place or is recently developed or improved. The results of the presented research indicate that wild plants and especially their reproductive flower stage are highly sensitive and risks are underestimated. Population recovery of arthropods needs a reevaluation at landscape scale and the addition of amphibian risk assessment in regulation procedures is suggested. However, developing or adopting risk assessment procedures and test systems is a time consuming task and therefore the establishment of risk management options is a pragmatic alternative with immediate effects. Artificial wetlands in the agricultural landscape proved to be important foraging sites for bats and their creation could mitigate negative pesticide effects. The integration of direct and indirect effects in a risk assessment scheme for all organism groups addressing also landscape scale and pesticide mixtures requires a long developing time. The establishment of model landscapes where management options and integrated pest management are applied on a larger scale would allow us to study pesticide effects in a realistic scenario and to develop an approach for the agriculture of the future.