577 Ökologie
Refine
Keywords
- Biodiversität (1)
- Ecotoxicology (1)
- Nährstoffverfügbarkeit (1)
- Pollinators (1)
- Staubewässerung (1)
- grassland irrigation (1)
- periphyton (1)
Institute
The European landscape is dominated by intensive agriculture which leads to widespread impact on the environment. The frequent use of agricultural pesticides is one of the major causes of an ongoing decline in flower-visiting insects (FVIs). The conservation of this ecologically diverse assemblage of mobile, flying insect species is required by international and European policy. To counteract the decrease in species numbers and their abundances, FVIs need to be protected from anthropogenic stressors. European pesticide risk assessment was devised to prevent unacceptable adverse consequences of pesticide use on FVIs. However, there is an ongoing discussion by scientists and policy-makers if the current risk assessment actually provides adequate protection for FVI species.
The first main objective of this thesis was to investigate pesticide impact on FVI species. The scientific literature was reviewed to identify groups of FVIs, summarize their ecology, and determine their habitat. This was followed by a synthesis of studies about the exposure of FVIs in their habitat and subsequent effects. In addition, the acute sensitivity of one FVI group, bee species, to pesticides was studied in laboratory experiments.
The second main objective was to evaluate the European risk assessment for possible deficits and propose improvements to the current framework. Regulatory documents were screened to assess the adequacy of the guidance in place in light of the scientific evidence. The suitability of the honey bee Apis mellifera as the currently only regulatory surrogate species for FVIs was discussed in detail.
The available scientific data show that there are far more groups of FVIs than the usually mentioned bees and butterflies. FVIs include many groups of ecologically different species that live in the entire agricultural landscape. Their habitats in crops and adjacent semi-natural areas can be contaminated by pesticides through multiple pathways. Environmentally realistic exposure of these habitats can lead to severe effects on FVI population parameters. The laboratory studies of acute sensitivity in bee species showed that pesticide effects on FVIs can vary greatly between species and pesticides.
The follow-up critical evaluation of the European FVI risk assessment revealed major shortcomings in exposure and effect assessment. The honey bee proved to be a sufficient surrogate for bee species in lower tier risk assessment. Additional test species may be chosen for higher tier risk assessment to account for ecological differences. This thesis shows that the ecology of FVIs should generally be considered to a greater extent to improve the regulatory process. Data-driven computational approaches could be used as alternative methods to incorporate ecological trait data in spatio-temporal scenarios. Many open questions need to be answered by further research to better understand FVI species and promote necessary changes to risk assessment. In general, other FVI groups than bees need to be investigated. Furthermore, comprehensive data on FVI groups and their ecology need to be collected. Contamination of FVI habitat needs to be linked to exposure of FVI individuals and ecologically complex effects on FVI populations should receive increased attention. In the long term, European FVI risk assessment would benefit from shifting its general principles towards more scientifically informed regulatory decisions. This would require a paradigm shift from arbitrary assumptions and unnecessarily complicated schemes to a substantiated holistic framework.
Small headwater streams comprise most of the total channel length and catchment area in fluvial networks. They are tightly connected to their catchments and, thus, are highly vulnerable to changes in catchment hydrologic budgets and land use. Although these small, often fishless streams are of little economic interest, they are vital for the ecological and chemical state of larger water bodies. Although numerous studies investigate the impact of various anthropogenic stressors or altered catchment conditions, we lack an in-depth understanding of the natural conditions and processes in headwater streams. This natural state, however, largely affects how a headwater stream responds to anthropogenic or climatic changes. One of the major threats to aquatic ecosystems is the excessive anthropogenic input of nutrients leading to eutrophication. Nutrients exert a bottom-up effect in the food web, foremost affecting primary producers and their consumers, i.e. periphyton and benthic grazers in headwater streams. The periphyton-grazer link is the main path of autochthonous (in-stream) production into the stream food web and the strength of this link largely determines the effectiveness of this pathway. Therefore, this thesis aims at elucidating important biological processes with the explicit focus on periphyton-grazer interactions. I assessed different aspects of periphyton-grazer interactions using laboratory experiments to solve methodological problems, and using a field study to compare the benthic communities of three morphologically similar, phosphorus-limited, near-natural headwater streams. With the results of the laboratory experiments, I was able to show that periphyton RNA/DNA ratios can be used as proxy for periphyton growth rates in controlled experiments and that the fatty acid composition of grazing mayfly nymphs responds to changes in fatty acids provided by the diet after only two weeks. The use of the RNA/DNA ratio as a proxy for periphyton growth rate allows a comparison of these growth rates even in simple experimental set-ups and thereby permits the inclusion of this important process in ecotoxicological or ecological experiments. The observed fast turnover rates of fatty acids in consumer tissues show that even short-term changes in available primary producers can alter the fatty acid composition of primary consumers with important implications for the supply of higher trophic levels with physiologically important polyunsaturated fatty acids. With the results of the field study, I revealed gaps in the understanding of the linkages between catchment and in-stream phosphorus availability under near-natural conditions and demonstrated that seemingly comparable headwater streams had significantly different benthic communities. These differences most likely affect stream responses to environmental changes.
Grassland management has been increasingly intensified throughout centuries since mankind started to control and modify the landscape. Species communities were always shaped alongside management changes leading to huge alterations in species richness and diversity up to the point where land use intensity exceeded the threshold. Since then biodiversity became increasingly lost. Today, global biodiversity and especially grassland biodiversity is pushed beyond its boundaries. Policymakers and conservationists seek for management options which fulfill the requirements of agronomic interests as well as biodiversity conservation alongside with the maintenance of ecosystem processes. However, there is and will always be a trade-off.
Earlier in history, natural circumstances in a landscape mainly determined regionally adapted land use. These regional adaptions shaped islands for many specialist species, and thus diverse species communities, favoring the establishment of a high β-diversity. With the raising food demand, these regional and traditional management regimes became widely unprofitable, and the invention of mineral fertilizers ultimately led to a wide homogenization of grassland management and, as follows, the loss of biotic heterogeneity. In the course of the green revolution, this immediate coherence and the dependency between grassland biodiversity and traditional land use practices becomes increasingly noticed. Indeed, some traditional forms of management such as meadow irrigation have been preserved in a few regions and thus give us the opportunity to directly investigate their long-term relevance for the species communities and ecosystem processes. Traditional meadow irrigation was a common management practice to improve productivity in lowland, but also alpine hay meadows throughout Europe until the 20th century. Nowadays, meadow irrigation is only practiced as a relic in a few remnant areas. In parts of the Queichwiesen meadows flood irrigation goes back to the Middle Ages, which makes them a predestined as a model region to study the long- and short-term effects of lowland meadow irrigation on the biodiversity and ecosystem processes.
Our study pointed out the conservation value of traditional meadow irrigation for the preservation of local species communities as well as the plant diversity at the landscape scale. The structurally more complex irrigated meadows lead to the assumption of a higher arthropod diversity (Orthodoptera, Carabidae, Araneae), which could not be detected. However, irrigated meadows are a significant habitat for moisture dependent arthropod species. In the light of the agronomic potential, flood irrigation could be a way to at least reduce fertilizer costs to a certain degree and possibly prevent overfertilization pulses which are necessarily hazardous to non-target ecosystems. Still, the reestablishment of flood irrigation in formerly irrigated meadows, or even the establishment of new irrigation systems needs ecological and economic evaluation dependent on regional circumstances and specific species communities, at which this study could serve as a reference point.
Pelagic oxyclines, the transition zone between oxygen rich surface waters and oxygen depleted deep waters, are a common characteristic of eutrophic lakes during summer stratification. They can have tremendous effects on the biodiversity and the ecosystem functioning of lakes and, to add insult to injury, are expected to become more frequent and more pronounced as climate warming progresses. On these grounds, this thesis endeavors to advance the understanding of formation, persistence, and consequences of pelagic oxyclines: We test, whether the formation of metalimnetic oxygen minima is intrinsically tied to a locally enhanced oxygen consuming process, investigate the relative importance of vertical physical oxygen transport and biochemical oxygen consumption for the persistence of pelagic oxyclines, and finally assess their potential consequences for whole lake cycling. To pursue these objectives, the present thesis nearly exclusively resorts to in situ measurements. Field campaigns were conducted at three lakes in Germany featuring different types of oxyclines and resolved either a short (hours to days) or a long (weeks to months) time scale. Measurements comprised temperature, current velocity, and concentrations of oxygen and reduced substances in high temporal and vertical resolution. Additionally, vertical transport was estimated by applying the eddy correlation technique within the pelagic region for the first time. The thesis revealed, that the formation of metalimnetic oxygen minima does not necessarily depend on locally enhanced oxygen depletion, but can solely result from gradients and curvatures of oxygen concentration and depletion and their relative position to each other. Physical oxygen transport was found to be relevant for oxycline persistence when it considerably postponed anoxia on a long time scale. However, its influence on oxygen dynamics was minor on short time scales, although mixing and transport were highly variable. Biochemical consumption always dominated the fate of oxygen in pelagic oxyclines. It was primarily determined by the oxidative breakdown of organic matter originating from the epilimnion, whereas in meromictic lakes, the oxidation of reduced substances dominated. Beyond that, the results of the thesis emphasize that pelagic oxyclines can be a hotspot of mineralization and, hence, short-circuit carbon and nutrient cycling in the upper part of the water column. Overall, the present thesis highlights the importance of considering physical transport as well as biochemical cycling in future studies.
World’s ecosystems are under great pressure satisfying anthropogenic demands, with freshwaters being of central importance. The Millennium Ecosystem Assessment has identified anthropogenic land use and associated stressors as main drivers in jeopardizing stream ecosystem functions and the
biodiversity supported by freshwaters. Adverse effects on the biodiversity of freshwater organisms, such as macroinvertebrates, may propagate to fundamental ecosystem functions, such as organic matter breakdown (OMB) with potentially severe consequences for ecosystem services. In order to adequately protect and preserve freshwater ecosystems, investigations regarding potential and observed as well as direct and indirect effects of anthropogenic land use and associated stressors (e.g. nutrients, pesticides or heavy metals) on ecosystem functioning and stream biodiversity are needed. While greater species diversity most likely benefits ecosystem functions, the direction and magnitude of changes in ecosystem functioning depends primarily on species functional traits. In this context, the functional diversity of stream organisms has been suggested to be a more suitable predictor of changes in ecosystem functions than taxonomic diversity.
The thesis aims at investigating effects of anthropogenic land use on (i) three ecosystem functions by anthropogenic toxicants to identify effect thresholds (chapter 2), (ii) the organic matter breakdown by three land use categories to identify effects on the functional level (chapter 3) and (iii)on the stream community along an established land-use gradient to identify effects on the community level.
In chapter 2, I reviewed the literature regarding pesticide and heavy metal effects on OMB, primary production and community respiration. From each reviewed study that met inclusion criteria, the toxicant concentration resulting in a reduction of at least 20% in an ecosystem function was standardized based on laboratory toxicity data. Effect thresholds were based on the relationship between ecosystem functions and standardized concentration-effect relationships. The analysis revealed that more than one third of pesticide observations indicated reductions in ecosystem functions at concentrations that are assumed being protective in regulation. However, high variation within and between studies hampered the derivation of a concentration-effect relationship and thus effect thresholds.
In chapter 3, I conducted a field study to determine the microbial and invertebrate-mediated OMB by deploying fine and coarse mesh leaf bags in streams with forested, agricultural, vinicultural
and urban riparian land use. Additionally, physicochemical, geographical and habitat parameters were monitored to explain potential differences in OMB among land use types and sites. Regarding results, only microbial OMB differed between land use types. The microbial OMB showed a negative relationship with pH while the invertebrate-mediated OMB was positively related to tree cover. OMB responded to stressor gradients rather than directly to land use.
In chapter 4, macroinvertebrates were sampled in concert with leaf bag deployment and after species identification (i) the taxonomic diversity in terms of Simpson diversity and total taxonomic
richness (TTR) and (ii) the functional diversity in terms of bio-ecological traits and Rao’s quadratic entropy was determined for each community. Additionally, a land-use gradient was established and the response of the taxonomic and functional diversity of invertebrate communities along this gradient was investigated to examine whether these two metrics of biodiversity are predictive for the rate of OMB. Neither bio-ecological traits nor the functional diversity showed a significant relationship with
OMB. Although, TTR decreased with increasing anthropogenic stress and also the community structure and 26 % of bio-ecological traits were significantly related to the stress gradient, any of these shifts propagated to OMB.
Our results show that the complexity of real-world situations in freshwater ecosystems impedes the effect assessment of chemicals and land use for functional endpoints, and consequently our potential to predict changes. We conclude that current safety factors used in chemical risk assessment may not be sufficient for pesticides to protect functional endpoints. Furthermore, simplifying real-world stressor gradients into few land use categories was unsuitable to predict and quantify losses in OMB. Thus, the monitoring of specific stressors may be more relevant than crude land use categories to detect effects on ecosystem functions. This may, however, limit the large scale assessment of the status of OMB. Finally, despite several functional changes in the communities the functional diversity over several trait modalities remained similar. Neither taxonomic nor functional diversity were suitable predictors of OMB. Thus, when understanding anthropogenic impacts on the linkage between biodiversity and ecosystem functioning is of main interest, focusing on diversity metrics that are clearly linked to the stressor in question (Jackson et al. 2016) or integrating taxonomic and functional metrics (Mondy et al., 2012) might enhance our predictive capacity.
Statistical eco(-toxico)logy
(2017)
Freshwaters are of immense importance for human well-being.
Nevertheless, they are currently facing unprecedented levels of threat from habitat loss and degradation, overexploitation, invasive species and
pollution.
To prevent risks to aquatic ecosystems, chemical substances, like agricultural pesticides, have to pass environmental risk assessment (ERA) before entering the market.
Concurrently, large-scale environmental monitoring is used for surveillance of biological and chemical conditions in freshwaters.
This thesis examines statistical methods currently used in ERA.
Moreover, it presents a national-scale compilation of chemical monitoring data, an analysis of drivers and dynamics of chemical pollution in streams and, provides a large-scale risk assessment by combination with results from ERA.
Additionally, software tools have been developed to integrate different datasets used in ERA.
The thesis starts with a brief introduction to ERA and environmental monitoring and gives an overview of the objectives of the thesis.
Chapter 2 addresses experimental setups and their statistical analyses using simulations.
The results show that current designs exhibit unacceptably low statistical power, that statistical methods chosen to fit the type of data provide higher power and that statistical practices in ERA need to be revised.
In chapter 3 we compiled all available pesticide monitoring data from Germany.
Hereby, we focused on small streams, similar to those considered in ERA and used threshold concentrations derived during ERA for a large-scale assessment of threats to freshwaters from pesticides.
This compilation resulted in the most comprehensive dataset on pesticide exposure currently available for Germany.
Using state-of-the-art statistical techniques, that explicitly take the limits of quantification into account, we demonstrate that 25% of small streams are at threat from pesticides.
In particular neonicotinoid pesticides are responsible for these threats.
These are associated with agricultural intensity and can be detected even at low levels of agricultural use.
Moreover, our results indicated that current monitoring underestimates pesticide risks, because of a sampling decoupled from precipitation events.
Additionally, we provide a first large-scale study of annual pesticide exposure dynamics.
Chapters 4 and 5 describe software solutions to simplify and accelerate the integration of data from ERA, environmental monitoring and ecotoxicology that is indispensable for the development of landscape-level risk assessment.
Overall, this thesis contributes to the emerging discipline of statistical ecotoxicology and shows that pesticides pose a large-scale threat to small streams.
Environmental monitoring can provide a post-authorisation feedback to ERA.
However, to protect freshwater ecosystems ERA and environmental monitoring need to be further refined and we provide software solutions to utilise existing data for this purpose.
Leaf litter breakdown is a fundamental process in aquatic ecosystems, being mainly mediated by decomposer-detritivore systems that are composed of microbial decomposers and leaf-shredding, detritivorous invertebrates. The ecological integrity of these systems can, however, be disturbed, amongst others, by chemical stressors. Fungicides might pose a particular risk as they can have negative effects on the involved microbial decomposers but may also affect shredders via both waterborne toxicity and their diet; the latter by toxic effects due to dietary exposure as a result of fungicides’ accumulation on leaf material and by negatively affecting fungal leaf decomposers, on which shredders’ nutrition heavily relies. The primary aim of this thesis was therefore to provide an in-depth assessment of the ecotoxicological implications of fungicides in a model decomposer-detritivore system using a tiered experimental approach to investigate (1) waterborne toxicity in a model shredder, i.e., Gammarus fossarum, (2) structural and functional implications in leaf-associated microbial communities, and (3) the relative importance of waterborne and diet-related effects for the model shredder.
Additionally, knowledge gaps were tackled that were related to potential differences in the ecotoxicological impact of inorganic (also authorized for organic farming in large parts of the world) and organic fungicides, the mixture toxicity of these substances, the field-relevance of their effects, and the appropriateness of current environmental risk assessment (ERA).
In the course of this thesis, major differences in the effects of inorganic and organic fungicides on the model decomposer-detritivore system were uncovered; e.g., the palatability of leaves for G. fossarum was increased by inorganic fungicides but deteriorated by organic substances. Furthermore, non-additive action of fungicides was observed, rendering mixture effects of these substances hardly predictable. While the relative importance of the waterborne and diet-related effect pathway for the model shredder seems to depend on the fungicide group and the exposure concentration, it was demonstrated that neither path must be ignored due to additive action. Finally, it was shown that effects can be expected at field-relevant fungicide levels and that current ERA may provide insufficient protection for decomposer-detritivore systems. To safeguard aquatic ecosystem functioning, this thesis thus recommends including leaf-associated microbial communities and long-term feeding studies using detritus feeders in ERA testing schemes, and identifies several knowledge gaps whose filling seems mandatory to develop further reasonable refinements for fungicide ERA.
Flowering habitats to enhance biodiversity and pest control services in agricultural landscapes
(2015)
Meeting growing demands for agricultural products requires management solutions that enhance food production, whilst minimizing negative environmental impacts. Conventional agricultural intensification jeopardizes farmland biodiversity and associated ecosystem services through excessive anthropogenic inputs and landscape simplification. Agri-environment schemes (AES) are commonly implemented to mitigate the adverse effects of conventional intensification on biodiversity. However the moderate success of such schemes thus far would strongly benefit from more explicit goals regarding ecosystem service provisioning. Providing key resources to beneficial organisms may improve their abundance, fitness, diversity and the ecosystem services they provide. With targeted habitat management, AES may synergistically enhance biodiversity and agricultural production and thus contribute to ecological intensification. We demonstrate that sown perennial wildflower strips, as implemented in current AES focusing on biodiversity conservation also benefit biological pest control in nearby crops (Chapter 2).
Comparing winter wheat fields adjacent to wildflower strips with fields without wildflower strips we found strongly reduced cereal leaf beetle (Oulema sp.) density and plant damage near wildflower strips. In addition, winter wheat yield was 10 % higher when fields adjoined wildflower strips. This confirms previous assumptions that wildflower strips, known for positive effects on farmland biodiversity, can also enhance ecosystem services such as pest control and the positive correlation of yield with flower abundance and diversity suggests that floral resources are key. Refining sown flower strips for enhanced service provision requires mechanistic understanding of how organisms benefit from floral resources. In climate chamber experiments investigating the impact of single and multiple flowering plant species on fitness components of three key arthropod natural enemies of aphids, we demonstrate that different natural enemies benefit differently from the offered resources (Chapter 3).
Some flower species were hereby more valuable to natural enemies than others overall. Additionally, the mixture with all flowers generally performed better than monocultures, yet with no transgressive overyielding. By explicitly tailoring flower strips to the requirements of key natural enemies of crop pests we aimed to maximise natural enemy mediated pest control in winter wheat (Chapter 4)and potato (Chapter 5) crops.
Respecting the manifold requirements of diverse natural enemies but not pests, in terms of temporal and spatial provisioning of floral, extra floral and structural resources, we designed targeted annual flower strips that can be included in crop rotation to support key arthropods at the place and time they are needed. Indeed, field experiments revealed that cereal leaf beetle density and plant damage in winter wheat can be reduced by 40 % to 61 % and aphid densities in potatoes even by 77 %, if a targeted flower strip is sown into the field. These effects were not restricted to the vicinity of flower strips and, in contrast to fields without flower strip, often prevented action thresholds from being reached. This suggests that targeted flower strips could replace insecticides. All adult natural enemies were enhanced inside targeted flower strips when compared to control strips. Yet, spillover to the field was restricted to key natural enemies such as ground beetles (winter wheat), hoverflies (potato) and lacewings (winter wheat and potato), suggesting their dominant role in biological control. In potatoes, targeted flower strips also enhanced hoverfly species richness in strips and crop, highlighting their additional benefits for diversity.
The present results provide more insights into the mechanisms underlying conservation biological control and highlight the potential of tailored habitat management for ecological intensification.