Doctoral Thesis
Refine
Year of publication
Document Type
- Doctoral Thesis (462) (remove)
Language
- English (242)
- German (218)
- Multiple languages (1)
- Spanish (1)
Keywords
- Pestizid (8)
- Pflanzenschutzmittel (8)
- Führung (6)
- Inklusion (6)
- Grundwasserfauna (5)
- Landwirtschaft (5)
- Persönlichkeit (4)
- Software Engineering (4)
- Unterrichtsforschung (4)
- ecotoxicology (4)
Institute
- Fachbereich 7 (93)
- Fachbereich 8 (47)
- Institut für Informatik (32)
- Institut für Integrierte Naturwissenschaften, Abt. Biologie (29)
- Institut für Umweltwissenschaften (23)
- Institut für Integrierte Naturwissenschaften, Abt. Chemie (21)
- Fachbereich 5 (20)
- Institut für Computervisualistik (18)
- Institut für Wirtschafts- und Verwaltungsinformatik (13)
- Institut für Integrierte Naturwissenschaften, Abt. Physik (12)
- Fachbereich 6 (11)
- Institut für Pädagogik, Abteilung Pädagogik (11)
- Institute for Web Science and Technologies (11)
- Institut für Erziehungswissenschaft (10)
- Mathematisches Institut (10)
- Arbeitsbereich Biopsychologie, Klinische Psychologie und Psychotherapie (8)
- Institut für Management (8)
- Institut für Germanistik (7)
- Institut für Softwaretechnik (7)
- Institut für naturwissenschaftliche Bildung (7)
- Institut für Anglistik und Amerikanistik (6)
- Institut für Integrierte Naturwissenschaften (6)
- Institut für Integrierte Naturwissenschaften, Abt. Geographie (6)
- Institut für Psychologie (6)
- Institut für Sportwissenschaft (6)
- Institut für Kulturwissenschaft (5)
- Institut für Sozialwissenschaften (5)
- Arbeitsbereich Diagnostik, Differentielle und Persönlichkeitspsychologie, Methodik und Evaluation (4)
- Institut für Kunstwissenschaft (4)
- Institut für Musikwissenschaft und Musikpädagogik (4)
- Institut für Philosophie (4)
- Institut für Soziologie und Politikwissenschaft (4)
- Institut für Pädagogik, Abteilung Schulpädagogik/Allgemeine Didaktik (3)
- Arbeitsbereich Entwicklungspsychologie und Pädagogische Psychologie (2)
- Fachbereich 4 (2)
- Institut für Kunstwissenschaft und Bildende Kunst (2)
- Institut für Mathematik (2)
- Arbeitsbereich Allgemeine und Pädagogische Psychologie (1)
- Arbeitsbereich Kognitive Psychologie (1)
- Arbeitsbereich Sozial- und Wirtschaftspsychologie (1)
- Institut für Bildung im Kindes- und Jugendalter (1)
- Institut für Geschichte (1)
- Institut für Grundschulpädagogik (1)
- Institut für Kommunikationspsychologie und Medienpädagogik (1)
- Institut für Sonderpädagogik (1)
- Institut für fremdsprachliche Philologien (1)
On the recognition of human activities and the evaluation of its imitation by robotic systems
(2023)
This thesis addresses the problem of action recognition through the analysis of human motion and the benchmarking of its imitation by robotic systems.
For our action recognition related approaches, we focus on presenting approaches that generalize well across different sensor modalities. We transform multivariate signal streams from various sensors to a common image representation. The action recognition problem on sequential multivariate signal streams can then be reduced to an image classification task for which we utilize recent advances in machine learning. We demonstrate the broad applicability of our approaches formulated as a supervised classification task for action recognition, a semi-supervised classification task for one-shot action recognition, modality fusion and temporal action segmentation.
For action classification, we use an EfficientNet Convolutional Neural Network (CNN) model to classify the image representations of various data modalities. Further, we present approaches for filtering and the fusion of various modalities on a representation level. We extend the approach to be applicable for semi-supervised classification and train a metric-learning model that encodes action similarity. During training, the encoder optimizes the distances in embedding space for self-, positive- and negative-pair similarities. The resulting encoder allows estimating action similarity by calculating distances in embedding space. At training time, no action classes from the test set are used.
Graph Convolutional Network (GCN) generalized the concept of CNNs to non-Euclidean data structures and showed great success for action recognition directly operating on spatio-temporal sequences like skeleton sequences. GCNs have recently shown state-of-the-art performance for skeleton-based action recognition but are currently widely neglected as the foundation for the fusion of various sensor modalities. We propose incorporating additional modalities, like inertial measurements or RGB features, into a skeleton-graph, by proposing fusion on two different dimensionality levels. On a channel dimension, modalities are fused by introducing additional node attributes. On a spatial dimension, additional nodes are incorporated into the skeleton-graph.
Transformer models showed excellent performance in the analysis of sequential data. We formulate the temporal action segmentation task as an object detection task and use a detection transformer model on our proposed motion image representations. Experiments for our action recognition related approaches are executed on large-scale publicly available datasets. Our approaches for action recognition for various modalities, action recognition by fusion of various modalities, and one-shot action recognition demonstrate state-of-the-art results on some datasets.
Finally, we present a hybrid imitation learning benchmark. The benchmark consists of a dataset, metrics, and a simulator integration. The dataset contains RGB-D image sequences of humans performing movements and executing manipulation tasks, as well as the corresponding ground truth. The RGB-D camera is calibrated against a motion-capturing system, and the resulting sequences serve as input for imitation learning approaches. The resulting policy is then executed in the simulated environment on different robots. We propose two metrics to assess the quality of the imitation. The trajectory metric gives insights into how close the execution was to the demonstration. The effect metric describes how close the final state was reached according to the demonstration. The Simitate benchmark can improve the comparability of imitation learning approaches.