°æ¹®»ç
¿À´Ã ³»°¡ º» »óÇ°
(1)
´Ý±â
È¸»ç¼Ò°³
È¸»ç¼Ò°³
ÀÎ»ç¸»
¿¬Çõ
¾ð·Ð¼ÓÀÇ °æ¹®»ç
Á¶Á÷µµ ¹× ¿¬¶ôÃ³
Ã£¾Æ¿À½Ã´Â±æ
¿Ã´ñ¸Å½º
¼öÇÐÀÚ
¼öÇÐ»ç
¼öÇÐ»ç¶û
´ëÇÐ¼öÇÐÈ¸
´ëÇÑ¼öÇÐ±³À°ÇÐÈ¸
ÀÚ·á½Ç
ÀÚ·á¸ðÀ½
Á¤¿ÀÇ¥
¸ñ·Ï
µ¿¿µ»ó
°ßº»½ÅÃ»
ÀÌº¥Æ®
¼îÇÎ¸ô
¼îÇÎ¸ô >
¼öÀÔµµ¼
>
±¹³»µµ¼
¼öÀÔµµ¼
Mathematics
>
Mathematics
Mathematics Education
Engineering
Language / Linguistics
English Teaching / Methodology
Literature
ELT
Algebra
Calculus
Algebra
Geometry
Topology
Analysis
Differential Equation
History of Mathematics
Statistics
Applied Mathematics
General Science
Linear Algebra with Applications
¹«·á¹è¼Û
ÁöÀºÀÌ
:
Nicholson, W. Keith
ÃâÆÇ»ç
:
McGraw-Hill
ÆÇ¼ö
:
6th
ÆäÀÌÁö¼ö
:
576
ISBN
:
9780071088374
¿¹»óÃâ°íÀÏ
:
ÀÔ±ÝÈ®ÀÎÈÄ 2ÀÏ ÀÌ³»
ÁÖ¹®¼ö·®
:
°³
µµ¼°¡°Ý
:
36,000¿ø
( ¹«·á¹è¼Û )
Àû¸³±Ý
:
1,080 Point
Nicholson Linear Algebra 6e introduces the general idea of Linear Algebra much earlier than the competition keeping with the same rigorous and concise approach to linear algebra. Along with the many diagrams and examples that help students visualize, the 6e also keeps with the continuous introduction of concepts. #1 advantage is in Chap 5 known as the “bridging chapter” helps stop students from “hitting the wall” when abstract vector spaces are introduced in chap 6.
Dr. W. Keith Nicholson earned his undergraduate Degree in Applied Mathematics at the University of Alberta, and received his Ph.D. in Pure Mathematics from the University of California at Santa Barbara in 1970. He then moved to the University of Calgary, and has been a professor in the Department of Mathematics and Statistics since 1979, where he has been carrying out research in a branch of algebra called "Ring Theory". His continuing interest in teaching undergraduate students has led to another book in Linear Algebra (now in its third edition), a text in Abstract Algebra (second edition), and the creation (with Professor Claude Laflamme), of an internet tutorial for Linear Algebra called ILAW (Interactive Linear Algebra on the Web). Keith is married and has two grown sons.
Chapter 1: Systems of Linear Equations
Chapter 2: Matrix Algebra
Chapter 3: Determinants and Diagonalization
Chapter 4: Vector Geometry
Chapter 5: The Vector Space Rn
Chapter 6: Vector Spaces
Chapter 7: Linear Transformations
Chapter 8: Orthogonality
Chapter 9: Change of Basis
Chapter 10: Inner Product Spaces
Chapter 11:Canonical Forms
Appendix A: Complex Numbers
Appendix B: Proofs
Appendix C: Mathematical Induction
Appendix D: Polynomials
Introduction to Partial Di...
-Zachmanoglou-
(Dover)
Real Analysis Modern Techn...
-Folland-
(Wiley)
A First Course in Abstract...
-John B. Fraleigh-
(Addison-Wesley)
¼º±Õ°ü´ëÇÐ±³ access co...
¼º±Õ°ü´ëÇÐ±³ ¹ÌºÐÀûºÐ...
¿µ¾î°ÀÇ¸¦ À§ÇÑ ½Ç¿ë±³...
Linear Algebra and...
Linear Algebra : ...
A First Course in ...
Elementary Number ...
Linear Algebra and...
Friendly Introduct...
Linear Algebra and...
Linear Algebra : ...
Linear Algebra and...
A Concrete Approac...