Refine
Keywords
- ontology (4)
- Ontology (2)
- mobile phone (2)
- Context-aware processes (1)
- Description Logic (1)
- Discussion Forums (1)
- Distributed process execution (1)
- Dokumentation (1)
- Entscheidungsprozess (1)
- Generative Model (1)
Institute
The way information is presented to users in online community platforms has an influence on the way the users create new information. This is the case, for instance, in question-answering fora, crowdsourcing platforms or other social computation settings. To better understand the effects of presentation policies on user activity, we introduce a generative model of user behaviour in this paper. Running simulations based on this user behaviour we demonstrate the ability of the model to evoke macro phenomena comparable to the ones observed on real world data.
Expert-driven business process management is an established means for improving efficiency of organizational knowledge work. Implicit procedural knowledge in the organization is made explicit by defining processes. This approach is not applicable to individual knowledge work due to its high complexity and variability. However, without explicitly described processes there is no analysis and efficient communication of best practices of individual knowledge work within the organization. In addition, the activities of the individual knowledge work cannot be synchronized with the activities in the organizational knowledge work.rnrnSolution to this problem is the semantic integration of individual knowledgernwork and organizational knowledge work by means of the patternbased core ontology strukt. The ontology allows for defining and managing the dynamic tasks of individual knowledge work in a formal way and to synchronize them with organizational business processes. Using the strukt ontology, we have implemented a prototype application for knowledge workers and have evaluated it at the use case of an architectural fifirm conducting construction projects.
Towards Improving the Understanding of Image Semantics by Gaze-based Tag-to-Region Assignments
(2011)
Eye-trackers have been used in the past to identify visual foci in images, find task-related image regions, or localize affective regions in images. However, they have not been used for identifying specific objects in images. In this paper, we investigate whether it is possible to assign image regions showing specific objects with tags describing these objects by analyzing the users' gaze paths. To this end, we have conducted an experiment with 20 subjects viewing 50 image-tag-pairs each. We have compared the tag-to-region assignments for nine existing and four new fixation measures. In addition, we have investigated the impact of extending region boundaries, weighting small image regions, and the number of subjects viewing the images. The paper shows that a tag-to-region assignment with an accuracy of 67% can be achieved by using gaze information. In addition, we show that multiple regions on the same image can be differentiated with an accuracy of 38%.
We present the user-centered, iterative design of Mobile Facets, a mobile application for the faceted search and exploration of a large, multi-dimensional data set of social media on a touchscreen mobile phone. Mobile Facets provides retrieval of resources such as places, persons, organizations, and events from an integration of different open social media sources and professional content sources, namely Wikipedia, Eventful, Upcoming, geo-located Flickr photos, and GeoNames. The data is queried live from the data sources. Thus, in contrast to other approaches we do not know in advance the number and type of facets and data items the Mobile Facets application receives in a specific contextual situation. While developingrnMobile Facets, we have continuously evaluated it with a small group of fifive users. We have conducted a task-based, formative evaluation of the fifinal prototype with 12 subjects to show the applicability and usability of our approach for faceted search and exploration on a touchscreen mobile phone.
Designing Core Ontologies
(2011)
One of the key factors that hinders integration of distributed, heterogeneous information systems is the lack of a formal basis for modeling the complex, structured knowledge that is to be exchanged. To alleviate this situation, we present an approach based on core ontologies. Core ontologies are characterized by a high degree of axiomatization and formal precision. This is achieved by basing on a foundational ontology. In addition, core ontologies should follow a pattern-oriented design approach. By this, they are modular and extensible. Core ontologies allow for reusing the structured knowledge they define as well as integrating existing domainrnknowledge. The structured knowledge of the core ontologies is clearly separated from the domain-specific knowledge. Such core ontologies allow for both formally conceptualize their particular fields and to be flexibly combined to cover the needsrnof concrete, complex application domains. Over the last years, we have developed three independent core ontologies for events and objects, multimedia annotations, and personal information management. In this paper, we present the simultaneousrnuse and integration of our core ontologies at the example of a complex, distributed socio-technical system of emergency response. We describe our design approach for core ontologies and discuss the lessons learned in designing them. Finally, we elaborate on the beauty aspects of our core ontologies.
Ontologies play an important role in knowledge representation for sharing information and collaboratively developing knowledge bases. They are changed, adapted and reused in different applications and domains resulting in multiple versions of an ontology. The comparison of different versions and the analysis of changes at a higher level of abstraction may be insightful to understand the changes that were applied to an ontology. While there is existing work on detecting (syntactical) differences and changes in ontologies, there is still a need in analyzing ontology changes at a higher level of abstraction like ontology evolution or refactoring pattern. In our approach we start from a classification of model refactoring patterns found in software engineering for identifying such refactoring patterns in OWL ontologies using DL reasoning to recognize these patterns.
Existing tools for generating application programming interfaces (APIs) for ontologies lack sophisticated support for mapping the logics-based concepts of the ontology to an appropriate object-oriented implementation of the API. Such a mapping has to overcome the fundamental differences between the semantics described in the ontology and the pragmatics, i.e., structure, functionalities, and behavior implemented in the API. Typically, concepts from the ontology are mapped one-to-one to classes in the targeted programming language. Such a mapping only produces concept representations but not an API at the desired level of granularity expected by an application developer. We present a Model-Driven Engineering (MDE) process to generate customized APIs for ontologies. This API generation is based on the semantics defined in the ontology but also leverages additional information the ontology provides. This can be the inheritance structure of the ontology concepts, the scope of relevance of an ontology concept, or design patterns defined in the ontology.
We propose a new approach for mobile visualization and interaction of temporal information by integrating support for time with today's most prevalent visualization of spatial information, the map. Our approach allows for an easy and precise selection of the time that is of interest and provides immediate feedback to the users when interacting with it. It has been developed in an evolutionary process gaining formative feedback from end users.
The processing of data is often restricted by contractual and legal requirements for protecting privacy and IPRs. Policies provide means to control how and by whom data is processed. Conditions of policies may depend on the previous processing of the data. However, existing policy languages do not provide means to express such conditions. In this work we present a formal model and language allowing for specifying conditions based on the history of data processing. We base the model and language on XACML.
The novel mobile application csxPOI (short for: collaborative, semantic, and context-aware points-of-interest) enables its users to collaboratively create, share, and modify semantic points of interest (POI). Semantic POIs describe geographic places with explicit semantic properties of a collaboratively created ontology. As the ontology includes multiple subclassiffcations and instantiations and as it links to DBpedia, the richness of annotation goes far beyond mere textual annotations such as tags. With the intuitive interface of csxPOI, users can easily create, delete, and modify their POIs and those shared by others. Thereby, the users adapt the structure of the ontology underlying the semantic annotations of the POIs. Data mining techniques are employed to cluster and thus improve the quality of the collaboratively created POIs. The semantic POIs and collaborative POI ontology are published as Linked Open Data.