Refine
Year of publication
Document Type
- Study Thesis (5)
- Diploma Thesis (4)
- Doctoral Thesis (3)
- Bachelor Thesis (2)
- Conference Proceedings (2)
Language
- German (12)
- English (2)
- Multiple languages (2)
Keywords
- Bildverarbeitung (16) (remove)
Das Hauptziel der vorliegenden Arbeit ist die Absicherung der Qualität eines pharmazeutischen Produktionsprozesses durch die Überprüfung des Volumens mikroskopischer Polymerstäbchen mit einem hochgenauen 3D Messverfahren. Die Polymerstäbchen werden für pharmazeutische Anwendungen hergestellt. Aus Gründen der Qualitätssicherung muss das Istgewicht überprüft werden. Derzeit werden die Polymerstäbchen stichprobenartig mit einer hochpräzisen Waage gewogen. Für die nächste Generation von Polymeren wird angenommen, dass die Produktabmessungen weiter reduziert werden sollen und die Produktionstoleranzen auf 2,5% gesenkt werden. Die daraus resultierenden Genauigkeitsanforderungen übersteigen jedoch die Möglichkeiten der Wiegetechnik. Bei homogenen Materialien ist die Masse proportional zum Volumen. Aus diesem Grund kommt dessen Bestimmung als Alternative in Frage. Dies verschafft Zugang zu optischen Messverfahren und deren Flexibilität und Genauigkeitpotenzial. Für den Entwurf eines auf die Fragestellung angepassten Messkonzeptes sind weiterhin von Bedeutung, dass das Objekt kontaktlos, mit einer Taktzeit von maximal fünf Sekunden vermessen und das Volumen approximiert wird. Die Querschnitte der Polymerstäbchen sind etwa kreisförmig. Aufgrund der Herstellung der Fragmente kann nicht davon ausgegangen werden, dass die Anlageflächen orthogonal zur Symmetrieachse des Objektes sind. Daher muss analysiert werden, wie sich kleine Abweichungen von kreisförmigen Querschnitten sowie die nicht idealen Anlageflächen auswirken. Die maximale Standardabweichung für das Volumen, die nicht überschritten werden sollte, beträgt 2,5%. Dies entspricht einer maximalen Abweichung der Querschnittsfläche um 1106 µm² (Fehlerfortpfanzung). Als Bewertungskriterium wird der Korrelationskoeffzient zwischen den gemessenen Volumina und den Massen bestimmt. Ein ideales Ergebnis wäre 100%. Die Messung zielt auf einen Koeffzienten von 98% ab. Um dies zu erreichen, ist ein präzises Messverfahren für Volumen erforderlich. Basierend auf dem aktuellen Stand der Technik können die vorhandenen optischen Messverfahren nicht verwendet werden. Das Polymerstäbchen wird von einer Kamera im Durchlicht beobachtet. Daher sind der Durchmesser und die Länge sichtbar. Das Objekt wird mittels einer mechanischen Vorrichtung um die Längsachse gedreht. So können Bilder von allen Seiten aufgenommen werden. Der Durchmesser und die Länge werden mit der Bildverarbeitung berechnet. Das neue Konzept vereint die Vorteile der Verfahren: Es ist unempfindlich gegen Farb-/Helligkeitsänderungen und die Bilder können in beliebiger Anzahl aufgenommen werden. Außerdem sind die Erfassung und Auswertung wesentlich schneller. Es wird ein Entwurf und die Umsetzung einer Lösung zur hochpräzisen Volumenmessung von Polymerstäbchen mit optischer Messtechnik und Bildverarbeitung ausgearbeitet. Diese spezielle Prozesslösung in der Prozesslinie (inline) sollte eine 100%ige Qualitätskontrolle während der Produktion garantieren. Die Zykluszeiten des Systems sollte fünf Sekunden pro Polymerstäbchen nicht überschreiten. Die Rahmenbedienungen für den Prozess sind durch die Materialeigenschaften des Objekts, die geringe Objektgröße (Breite = 199 µm, Länge = 935 µm bis 1683 µm) und die undeffinierte Querschnittsform (durch den Trocknungsprozess) vorgegeben. Darüber hinaus sollten die Kosten für den Prozess nicht zu hoch sein. Der Messaufbau sollte klein sein und ohne Sicherheitsvorkehrungen oder Abschirmungen arbeiten. Das entstandene System nimmt die Objekte in verschiedenen Winkelschritten auf, wertet mit Hilfe der Bildverarbeitung die Aufnahmen aus und approximiert das Volumen. Der Korrelationskoffizient zwischen Volumen und Gewicht beträgt für 77 Polymerstäbchen mit einem Gewicht von 37 µg bis 80 µg 99; 87%. Mit Hilfe eines Referenzsystems kann die Genauigkeit der Messung bestimmt werden. Die Standardabweichung sollte maximal 2,5% betragen. Das entstandene System erzielt eine maximale Volumenabweichung von 1,7%. Die Volumenvermessung erfüllt alle Anforderungen und kann somit als Alternative für die Waage verwendet werden.
The cytological examination of bone marrow serves as clarification of variations in blood smears. It is also used for the clarification of anemia, as exclusion of bone marrow affection at lymphoma and at suspicion of leukemia. The morphological evaluation of hematopoietic cells is the basis for the creation of the diagnosis and for decision support for further diagnostics. Even for experienced hematologists the manual classification of hematopoietic cells is time-consuming, error-prone and subjective. For this reason new methods in the field of image processing and pattern recognition for the automatic classification including preprocessing steps are developed for a computer-assisted microscopy system. These methods are evaluated by means of a huge reference database. The proposed image analysis procedures comprise methods for the automated detection of smears, for the determination of relevant regions, for the localization and segmentation of single hematopoietic cells as well as for the feature extraction and classification task. These methods provide the basis for the first system for the automated, morphological analysis of bone marrow aspirates for leukemia diagnosis and are therefore a major contribution for a better and more efficient patient care in the future.
This bachelor thesis’s objective is to offer the reader insight into the discrete Fourier transform, the discrete cosine transform and the discrete Hadamard-Walsh transform in the context of image processing, and also to compare these transformations under various aspects. For this purpose the term of transformation, originated in linear algebra, will be explained and applied to image processing. Subsequently, the understanding of the Fourier transform will successively be built up and connected to the two remaining transforms. Finally, the transformations will be compared and their usefulness in relation to image processing will be explained.
Proceedings des FWS 2015
(2016)
Die Aufnahme, Verarbeitung und Analyse farbiger bzw. mehrkanaliger Bilder gewinnt seit Jahren ständig an Bedeutung. Diese Entwicklung wird durch die verbesserten technischen Möglichkeiten und die stetig steigenden Ansprüche aus den vielfältigen Anwendungsfeldern in Industrie, Medizin, Umwelt und Medien befördert. Diesem Trend folgend wurde in Koblenz 1995 erstmals der Workshop Farbbildverarbeitung durchgeführt und hat sich seitdem als jährlich stattfindende Veranstaltung etabliert. Als Veranstaltung der German ColorGroup bietet der Workshop ein Diskussionsforum für Forscher, Entwickler und Anwender, das sich den Problemen der Farbtheorie, Farbmessung, Farbbildaufnahme und spektralen Bildgewinnung ("hyper-spectral imaging") genauso wie der Entwicklung von neuen Methoden und Algorithmen zur Verarbeitung und Analyse von Farbbildern und mehrkanaligen (spektroskopischen) Bilddaten widmet. Ebenso nehmen Fragestellungen der farbtreuen Bildreproduktion auf verschiedenen Ausgabemedien wie auch die Nutzung von Methoden und Verfahren der Farbbildverarbeitung im Rahmen der industriellen Qualitätskontrolle sowie in Robotik und Automatisierung gebührenden Platz ein.
The present work starts with an introduction of methods for three-dimensional curve skeletonization. Different kinds of historic and recent skeletonization approaches are analysed in detail. Later on, a state-of-the-art skeletonization algorithm is introduced. This algorithm deals as a basis for the own approach presented subsequently. After the description and definition of a new method improving the state-of-the-art algorithm, experiments are conducted to get appraisable results. Next, a ground truth is described which has been set up manually by humans. The human similarity evaluations are compared with the results of the automatic computer-based similarity measures provided by the own approach. For this comparison, standard evaluation criteria from the field of information retrieval have been used.
This thesis focuses on the utilization of modern graphics hardware (GPU) for visualization and computation purposes, especially of volumetric data from medical imaging. The considerable increase in raw computing power in recent years has turned commodity systems into high-performance workstations. In combination with the direct rendering capabilities of graphics hardware, "visual computing" and "computational steering" approaches on large data sets have become feasible. In this regard several example applications and concepts such as the "ray textures" have been developed and are discussed in detail. As the amount of data to be processed and visualized is steadily increasing, memory and bandwidth limitations require compact representations of the data. While the compression of image data has been investigated extensively in the past, the thesis addresses possibilities of performing computations directly on the compressed data. Therefore, different categories of algorithms are identified and represented in the wavelet domain. By using special variants of the compressed format, efficient implementations of essential image processing algorithms are possible and demonstrate the potential of the approach. From the technical perspective, the GPU-based framework "Cascada" has been developed in the course of this thesis. The introduction of object-oriented concepts to shader programming, as well as a hierarchical representation of computation and/or visualization procedures led to a simplified utilization of graphics hardware while maintaining competitive performance. This is shown with different implementations throughout the contributions, as well as two clinical projects in the field of diagnosis assistance. On the one hand the semi-automatic segmentation of low-resolution MRI data sets of the human liver is evaluated. On the other hand different possibilities in assessing abdominal aortic aneurysms are discussed; both projects make use of graphics hardware. In addition, "Cascada" provides extensions towards recent general-purpose programming architectures and a modular design for future developments.
This thesis evaluates automated techniques to remove objects from an image and proposed several modifications for the specific application of removing a colour checker from structure dominated images. The selection of approaches covers the main research field of image inpainting as well as an approach used in medical image processing. Their results are investigated to disclose their applicability to removing objects from structure-intense images. The advantages and disadvantages discovered in the process are then used to propose several modifications for an adapted inpainting approach suitable for removing the colour checker.
Die Erstellung räumlicher Abbilder aus planaren Ansichten gewinnt immer mehr Bedeutung in der modernen Medizintechnik. 3D-Rekonstruktionen haben wesentlich zur besseren Detektion,wie auch zu Optimierung und Innovation in der Diagnostik und Behandlungsmethodik bestimmter Krankheitsbilder beigetragen. Durch die Verfahren der Bildverarbeitung ist es möglich, aus Bildsequenzen eine 3D-Abbildung der gefilmten Szene zu erstellen. Ziel dieser Diplomarbeit soll es sein, zu untersuchen, inwieweit sich aus der Aufnahmetechnik aus einer Reihe unkalibrierter Endoskopiebilder weitere Rückschlüsse über die Oberflächenbeschaffenheit des betrachteten Gewebes ziehen lassen. Hierbei wird das Phänomen zugrundegelegt, daß bei der Aufnahme der Bilder Glanzlichter auftreten, wenn die Beleuchtung am Kamerakopf orthogonal zur Gewebeoberfläche auftrifft. Diese Glanzlichter geben daher implizit Aufschluss über die Oberflächenorientierung des Gewebes. Aufgabe ist es nun, diese Glanzlichter in einer Reihe von unkalibrierten Endoskopieaufnahmen zu finden, die Bilder aus der Sequenz einander zuzuordnen, also Korrespondenzen zwischen den Bildern zu finden, und unter Einbeziehung der Kamerageometrie Rückschlüsse auf die Gewebeoberfläche zu ziehen. Zuerst müssen hierfür die Glanzlichter in den Einzelbildern der Sequenz gefunden werden. Dazu wird ein Verfahren verwendet, welches die Glanzlichter durch eine Zerlegung des HSV-Farbraums detektiert und deren Mittelpunkt errechnet. Um die Kamerageometrie zu schätzen, werden mihilfe eines Punktverfolgers Punktkorrespondenzen zwischen den Einzelbildern erstellt, anhand derer sich die Fundamentalmatrix durch RANSAC errechnen läßt. Unter Anwendung eines Autokalibrierungsverfahrens werden aus den geschätzten Fundamentalmatrizen dann in einem abschließenden Schritt die internen Kameraparameter ermittelt. So sollte möglich sein, die Glanzlichter durch eine Sequenz von Bildern zu verfolgen und die Oberflächennormalen einem Referenzbild zuzuordnen.
In dieser Arbeit wird die Umsetzung und Modifikation des Verfahrens von Finlayson et al. zur Schattenentfernung in einzelnen Farbbildern unter Verwendung des Retinex-Algorithmus vorgestellt. Für die benötigte Detektion von Schattenkanten wurde ein Verfahren von Finlayson et al. umgesetzt und angepasst. Die erforderliche Kamerakalibrierung wurde dabei nicht mit Tageslicht, sondern unter Verwendung künstlicher Lichtquellen realisiert. Anhand von Campus-Bildsequenzen wird ein qualitativer Vergleich des umgesetzten Verfahrens mit dem von Weiss zur Schattenentfernung in Bildserien vorgenommen. Außerdem wird ein erster Ansatz vorgestellt, wie Verfahren zur Schattenentfernung quantitativ bewertet werden können. Die Erzeugung der benötigten Ground-truth-Daten wird mit Hilfe von Laboraufnahmen realisiert, sodass keine manuelle Segmentierung von Schatten erforderlich ist. Anhand der Ergebnisse von Experimenten wird gezeigt, inwieweit die definierten Maße eine Bewertung und einen Vergleich der beiden Verfahren erlauben.
Das Forschungsprojekt Bildanalyse zur Ornamentklassifikation hat es sich zur Aufgabe gemacht, ornamentale Strukturen in Bildern computergestützt zu lokalisieren, analysieren und klassifizieren. Grundlage des Projekts bildet eine umfangreiche Bilddatenbank, deren Abbildungen manuell vorsortiert sind. Durch Kombinationen mit Methoden der Bildverabeitung und der Verwendung von Wissensdatenbanken (Knowledge Databases) soll diese Kategorisierung weiter verfeinert werden. Sämtliche Bilder durchlaufen bis zum Prozess der Ornamentklassifikation mehrere Vorverarbeitungsschritte. Beginnend mit einem Normalisierungsprozess, bei dem das Bild u. a. entzerrt und entrauscht wird, werden im Anschluss Interessensregionen selektiert. Diese Regionen bilden die Grundlage für das spätere Lokalisieren der Ornamente. Aus ihnen werden mit unterschiedlichen Verfahren Merkmale extrahiert, die wiederum in der Datenbank gespeichert werden. In dieser Arbeit wurde ein weiteres solches Verfahren implementiert und auf seine mögliche Verwendung in dem Projekt untersucht.