The goal of this minor thesis is to integrate a robotic arm into an existing robotics software. A robot built on top of this stack should be able to participate successfully RoboCup @Home league. The robot Lisa (Lisa is a service android) needs to manipulate objects, lifting them from shelves or handing them to people. Up to now, the only possibility to do this was a small gripper attached to the robot platform. A "Katana Linux Robot" of Swiss manufacturer Neuronics has been added to the robot for this thesis. This arm needs a driver software and path planner, so that the arm can reach its goal object "intelligently", avoiding obstacles and creating smooth, natural motions.
Die Studienarbeit analysiert mit Hilfe einer erweiterten Balancetheorie die Relationen des Roboters zu den Personen im Kamerabild und den Personen untereinander. Es wurde gezeigt, dass die Abstraktion der Balancetheorie auf eine konkrete Anwendung übertragen werden kann. Allerdings muss die Theorie erweitert und teilweise eingeschränkt werden, um sie flexibler, aber gleichzeitig passend zur Anwendung zu gestalten. Dadurch wird die theoretische Grundlage, auf der die Arbeit beruht, ebenfalls verändert. Damit diese Modifikationen nicht den Rahmen der psychologischen Grundlage verlassen, müssen sie wiederum mit psychologischen Mitteln untersucht werden. Das würde allerdings den Umfang dieser Arbeit überschreiten, aber bietet ein Ansatz für eine interdisziplinäre Zusammenarbeit der Psychologie und Robotik. Die Interaktion und das Verhalten der Maschinen nach menschlicher Vorlage zu gestalten, ist für beide Disziplinen von Interesse. Im Kontext der Entwicklung einer ausreichenden Interaktion zwischen der Maschine und dem Menschen, wäre es interessant zu erforschen, welche sozialen Merkmale detektiert werden müssten, zum Beispiel im Spektrum der Mimik. Darüberhinaus ermöglicht die Recognize-Pipeline ein Ansatz, die Interaktion über das Kamerabild hinaus zu verfolgen. Dadurch kann der Roboter das Gesicht mit vergangenen Interaktionen assoziieren und dem entsprechend agieren. Allerdings bedarf die Pipeline-Struktur weiterer Arbeit. So werden bestehende Datenbanken über ein Gesicht nicht mit neuen Bildern erweitert, so fern sie notwendig sind. Auch kann keine automatische Korrektur erfolgen, falls fehlerhafte Informationen in die Datenbank gelangen. So kann es vorkommen, dass das selbe Gesicht zwei unterschiedliche IDs erhält, wenn das Gesicht nicht wiedererkannt wird. Auch können sehr ähnliche Gesichter zusammenfallen zu einer ID. Solche Fehler müssten für eine stabile Anwendung selbständig korrigierbar sein.
Das sichere Befahren von komplexen und unstruktierten Umgebungen durch autonome Roboter ist seit den Anfängen der Robotik ein Problem und bis heute eine Herausforderung geblieben. In dieser Studienarbeit werden drei Verfahren basierend auf 3-D-Laserscans, Höhenvarianz, der Principle Component Analysis (PCA) und Tiefenbildverarbeitung vorgestellt, die es Robotern ermöglichen, das sie umgebende Terrain zu klassifizieren und die Befahrbarkeit zu bewerten, sodass eine sichere Navigation auch in Bereichen möglich wird, die mit reinen 2-D-Laserscannern nicht sicher befahren werden können. Hierzu werden 3-D-Laserscans mit einem 2-D-Laserscanner erstellt, der auf einer Roll-Tilt-Einheit basierend auf Servos montiert ist, und gleichzeitig auch zur Kartierung und Navigation eingesetzt wird. Die einzeln aufgenommenen 2-D-Scans werden dann anhand des Bewegungsmodells der Roll-Tilt-Einheit in ein emeinsames 3-D-Koordinatensystem transformiert und mit für die 3-D-Punktwolkenerarbeitung üblichen Datenstrukturen (Gittern, etc.) und den o.g. Methoden klassifiziert. Die Verwendung von Servos zur Bewegung des 2-D-Scanners erfordert außerdem eine Kalibrierung und Genauigkeitsbetrachtung derselben, um zuverlässige Ergebnisse zu erzielen und Aussagen über die Qualität der 3-D-Scans treffen zu können. Als Ergebnis liegen drei Implementierungen vor, welche evolutionär entstanden sind. Das beschriebene Höhenvarianz-Verfahren wurde im Laufe dieser Studienarbeit von einem Principle Component Analysis basierten Verfahren, das bessere Ergebnisse insbesondere bei schrägen Untergründen und geringer Punktdichte bringt, abgelöst. Die Verfahren arbeiten beide zuverlässig, sind jedoch natürlich stark von der Genauigkeit der zur Erstellung der Scans verwendeten Hardware abhängig, die oft für Fehlklassifikationen verantwortlich war. Die zum Schluss entwickelte Tiefenbildverarbeitung zielt darauf ab, Abgründe zu erkennen und tut dies bei entsprechender Erkennbarkeit des Abgrunds im Tiefenbild auch zuverlässig.
Der Aufbau der Studienarbeit ist wie folgt: Nach einer kurzen Einführung in das Thema des Scanmatchings wird anhand der theoretischen Basis von Icp, Idc und MbIcp der aktuelle Stand der Technik vorgestellt. Im nächsten Kapitel folgt die Beschreibung des eigenen Ansatzes. Dieser umfasst die strukturellen Aspekte der Implementation, eigeneModifikationen und die Einbindung der Verfahren in die Kartenerstellung von Robbie. Im Anschluss findet sich die Evaluation der Verfahren. Dort werden Effizienztests der wichtigsten Programmparameter durchgeführt und die Wirkungsweise des Scanmatchers im Zuge der Kartenerstellung evaluiert. In letzten Kapitel folgt dann eine Zusammenfassung der Ergebnisse mit Ausblick aufweitere Nutzungs- und Forschungsbereiche.
In dieser Studienarbeit wurde ein Algorithmus vorgestellt, um sich mit einem Roboter in unbekanntem Gebiet zu lokalisieren und gleichzeitig eine Karte von der Umgebung zu erstellen. Die Lokalisation des Roboters geschieht auf 2D Ebene und errechnet die (x, y, θ)T Position des Roboters zu jedem Zeitpunt t inkrementell. Der Algorithmus baut auf dem FastSLAM 2.0 Algorithmus auf und wurde abgeändert, um eine möglichst genaue Lokalisation in Gebäuden zu ermöglichen. Hierfür wurden mehrere verschieden Arten von möglichen Landmarken untersucht, verglichen und kombiniert. Schwerpunkt dieser Studienarbeit war das Einarbeiten in das Extended Kalman-Filter und die Selektion von Landmarken, die für den Einsatz in Gebäuden geeignet sind.
Große Gebiete lassen sich auf Grund von Schattenbildung und begrenzter Scanreichweite nicht mit einem einzigen 3D-Scan aufnehmen. Um konsistente dreidimensionale Karten dieses Gebietes zu erzeugen müssen also mehrere Scans zusammengefügt werden. Soll dieses Matchen der Scans automatisch geschehen, so kann es wegen fehlerhaften Translations- und Rotationsdaten, die die unterschiedlichen Positionen der Scans beschreiben,zu inkonsistenten Karten kommen. Um dies zu vermeiden wird in dieser Arbeit ein schneller Iterativ Closest Points Algorithmus implementiert, der versucht, Fehler in diesen sechs Freiheitsgraden zu korrigieren. Das Verfahren soll im Rahmen dieser Arbeit in die schon vorhandene Software unseres Roboters eingebunden werden.
Autonomous exhaustive exploration of unknown indoor environments with the mobile robot "Robbie"
(2007)
Rettungsroboter helfen nach Katastrophen wie z.B. Erdbeben dabei, in zerstörten Gebäuden Überlebende zu finden. Die Aufgabe, die Umgebung effizient möglichst vollständig abzusuchen und dabei eine Karte zu erstellen, die den Rettungskräften bei der Bergung der Opfer zur Orientierung dient, soll der Roboter autonom erfüllen. Hierzu wird eine Explorationsstrategie benötigt; eine Strategie zur Navigation in bekanntem und zur Erkundung von unbekanntem Gelände. Für den mobilen Roboter "Robbie" der Arbeitsgruppe Aktives Sehen wurde in dieser Arbeit ein Grenzen-basierter Ansatz zur Lösung des Explorationsproblems ausgewählt und implementiert. Hierzu werden Grenzen zu unbekanntem Gelände aus der Karte, die der Roboter erstellt, extrahiert und angefahren. Grundlage der Navigation zu einem so gefundenen Wegpunkt bildet die sog. Pfad-Transformation (Path-Transform).
Die Selbstlokalisation von Robotern ist schon seit Jahren ein aktuelles Forschungsthema, das insbesondere durch immer weiterentwickelte Techniken und Verfahren verbessert werden kann. Insbesondere finden Laserscanner in der Robotik immer häufiger Anwendung. In dieser Arbeit wird untersucht, ob durch die Fusionierung von Kamerabildern und 3D-Laserscannerdaten eine robuste und schnelle Selbstlokalisation theoretisch sowie praktisch realisierbar ist.
Ziel dieser Arbeit ist die erweiterte Modellierung des Rettungsroboters "Robbie" in der USARSim Simulationsumbegung. Es soll zusätzlich zu den bestehenden Sonarsensoren und dem Laserscanner, ein Wärmesensor angebunden werden, der Wärmebilder an die entsprechenden Robbie-Module liefert. Der bisherige 2D Laserscanner ist so zu modifizieren, dass er 3D Laserdaten erzeugt und an die Robbie-Software weiterleitet. Um die Simulation möglichst Wirklichkeitsgetreu zu gestalten, sind realitätsnahe, verrauschte Daten zu erzeugen. Ferner soll die Effizienz der Simulation getestet werden. Dazu ist mittels einer Evaluation zu untersuchen, wie das Verhalten des simulierten Roboters, im Bezug zum realen Verhalten des Roboters steht. Ein weiteres, größeres Problem stellt die Bereitstellung von Stereobildern aus der Simulationsumgebung dar. Ein spezieller Kameraserver soll installiert und in Betrieb genommen werden. Die Umwandlung der so erzeugten Bilder, in ein geeignetes Format, und deren Weiterleitung an die Robbie-GUI, ist ebenfalls zu implementieren.