Refine
Document Type
- Bachelor Thesis (1)
- Master's Thesis (1)
Keywords
- Beleuchtung (1)
- Compute-Shader (1)
- GPGPU (1)
- Graphik (1)
- Ray tracing (1)
- VOXEL (1)
- Voxelisierung (1)
- image warping (1)
- indirect lighting (1)
- indirektes Licht (1)
With the emergence of current generation head-mounted displays (HMDs), virtual reality (VR) is regaining much interest in the field of medical imaging and diagnosis. Room-scale exploration of CT or MRI data in virtual reality feels like an intuitive application. However in VR retaining a high frame rate is more critical than for conventional user interaction seated in front of a screen. There is strong scientific evidence suggesting that low frame rates and high latency have a strong influence on the appearance of cybersickness. This thesis explores two practical approaches to overcome the high computational cost of volume rendering for virtual reality. One lies within the exploitation of coherency properties of the especially costly stereoscopic rendering setup. The main contribution is the development and evaluation of a novel acceleration technique for stereoscopic GPU ray casting. Additionally, an asynchronous rendering approach is pursued to minimize the amount of latency in the system. A selection of image warping techniques has been implemented and evaluated methodically, assessing the applicability for VR volume rendering.
This thesis imparts a general view of the mechanics and implementation of latest voxelization strategies using the GPU. In addition to established voxelization procedures using the rasterization pipeline, new possibilities arising from GPGPU programming are examined. On the basis of the programming language C++ and the graphics library OpenGL the implementation of several methods is explained. The methods are compared in terms of performance and quality of the resulting voxelization and are evaluated critically with regards to possible use cases. Furthermore, two exemplary applications are detailed that use a voxelized scene in such a way that the augmentation of established techniques of real time graphics are facilitated. To this end, the concepts and the implementations of Transmittance Shadow Mapping and of Reflective Shadow Mapping utilizing a voxel based ambient occlusion effect is explained. Finally, the prolonging relevance of voxelization is put into prospect, by addressing latest research and further enhancements and applications of the presented methods.