Refine
Document Type
- Diploma Thesis (1)
- Study Thesis (1)
Keywords
- GPGPU (1)
- Maschinelles Sehen (1)
- Natural Feature Tracking (1)
Institute
In this thesis the feasibility of a GPGPU (general-purpose computing on graphics processing units) approach to natural feature description on mobile phone GPUs is assessed. To this end, the SURF descriptor [4] has been implemented with OpenGL ES 2.0/GLSL ES 1.0 and evaluated across different mobile devices. The implementation is multiple times faster than a comparable CPU variant on the same device. The results proof the feasibility of modern mobile graphics accelerators for GPGPU tasks especially for the detection phase in natural feature tracking used in augmented reality applications. Extensive analysis and benchmarking of this approach in comparison to state of the art methods have been undertaken. Insights into the modifications necessary to adapt and modify the SURF algorithm to the limitations of a mobile GPU are presented. Further, an outlook for a GPGPU-based tracking pipeline on a mobile device is provided.
In dieser Arbeit wird die Implementierung des SURF-Feature-Detektors auf der GPU mit Hilfe von CUDA detailliert beschrieben und die Ergebnisse der Implementation ausgewertet. Eine Einführung in das Programmiermodell von CUDA sowie in die Funktionsweise des Hesse-Detektors des SURF-Algorithmus sind ebenfalls enthalten.