Refine
In the last decade, policy-makers around the world have turned their attention toward the creative industry as the economic engine and significant driver of employments. Yet, the literature suggests that creative workers are one of the most vulnerable work-forces of today’s economy. Because of the highly deregulated and highly individuated environment, failure or success are believed to be the byproduct of individual ability and commitment, rather than a structural or collective issue. This thesis taps into the temporal, spatial, and social resolution of digital behavioural data to show that there are indeed structural and historical issues that impact individuals’ and
groups’ careers. To this end, this thesis offers a computational social science research framework that brings together the decades-long theoretical and empirical knowledge of inequality studies, and computational methods that deal with the complexity and scale of digital data. By taking music industry and science as use cases, this thesis starts off by proposing a novel gender detection method that exploits image search and face-detection methods.
By analysing the collaboration patterns and citation networks of male and female computer scientists, it sheds lights on some of the historical biases and disadvantages that women face in their scientific career. In particular, the relation of scientific success and gender-specific collaboration patterns is assessed. To elaborate further on the temporal aspect of inequalities in scientific careers, this thesis compares the degree of vertical and horizontal inequalities among the cohorts of scientists that started their career at different point in time. Furthermore, the structural inequality in music industry is assessed by analyzing the social and cultural relations that breed from live performances and musics releases. The findings hint toward the importance of community belonging at different stages of artists’ careers. This thesis also quantifies some of the underlying mechanisms and processes of inequality, such as the Matthew Effect and the Hipster Paradox, in creative careers. Finally, this thesis argues that online platforms such as Wikipedia could reflect and amplify the existing biases.