• Deutsch
Login

OPUS

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Keywords

  • Segmentation (1) (remove)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Semi-Automatic Segmentation of the Mitral Valve Leaflets on 4D Ultrasound Images (2015)
Lichtenberg, Nils
The mitral valve is one of the four valves in the human heart. It is located in the left heart chamber and its function is to control the blood flow from the left atrium to the left ventricle. Pathologies can lead to malfunctions of the valve so that blood can flow back to the atrium. Patients with a faulty mitral valve function may suffer from fatigue and chest pain. The functionality can be surgically restored, which is often a long and exhaustive intervention. Thorough planning is necessary to ensure a safe and effective surgery. This can be supported by creating pre-operative segmentations of the mitral valve. A post-operative analysis can determine the success of an intervention. This work will combine existing and new ideas to propose a new approach to (semi-)automatically create such valve models. The manual part can guarantee a high quality model and reliability, whereas the automatic part contributes to saving valuable labour time. The main contributions of the automatic algorithm are an estimated semantic separation of the two leaflets of the mitral valve and an optimization process that is capable of finding a coaptation-line and -area between the leaflets. The segmentation method can perform a fully automatic segmentation of the mitral leaflets if the annulus ring is already given. The intermediate steps of this process will be integrated into a manual segmentation method so a user can guide the whole procedure. The quality of the valve models generated by the method proposed in this work will be measured by comparing them to completely manually segmented models. This will show that commonly used methods to measure the quality of a segmentation are too general and do not suffice to reflect the real quality of a model. Consequently the work at hand will introduce a set of measurements that can qualify a mitral valve segmentation in more detail and with respect to anatomical landmarks. Besides the intra-operative support for a surgeon, a segmented mitral valve provides additional benefits. The ability to patient-specifically obtain and objectively describe the valve anatomy may be the base for future medical research in this field and automation allows to process large data sets with reduced expert dependency. Further, simulation methods that use the segmented models as input may predict the outcome of a surgery.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks