Refine
Identifizierung und Quantifizierung von Mikroplastik mittels quantitativer ¹H-NMR Spektroskopie
(2021)
Plastic, and so microplastics (MP), are globally present and represent an increasingly significant problem for the environment. In order to understand the distribution and impact of MP it is important to identify and quantify MP over a wide range of sizes and to ensure comparability of studies. However, comparability of studies is made difficult or even impossible by different MP concentration data. There still is a great need for research in the field of size-independent, quantitative analysis of MP in environmental samples, especially with regard to mass-based MP concentration information. Therefore, this thesis aims to utilize quantitative ¹H-NMR spectroscopy (qNMR) as an alternative method in MP analysis. The qNMR method is a size-independent, mass-based method which can be used as an alternative for MP analysis and has potential for routine analysis. The proof-of-concept was demonstrated for LDPE, PET and PS particles (Chapter 2). Additionally, PVC, PA, and ABS particles were tested to cover the most important polymer types for MP-analysis (Chapter 3). Moreover, using PET, PVC and PS as examples it was examined whether the qNMR method can also be transferred to the more cost-effective NoD method (Chapter 4). Results of method validation of both methods (1D and NoD) show that quantification using the qNMR method is not only possible in principle, but also shows high accuracy (88.0-110 %) and detection limits (1 – 84 µg) that lie within the environmentally relevant range. Furthermore, it was examined whether not only high-field instruments are suitable for MP analysis, but also benchtop devices (low-field instruments), which are much more cost-effective in purchase and maintenance. Increasing measurement times for PET and PS to 30 min and for PVC to 140 min, the lower measuring frequency especially concerning resolving capacity could be compensated (Chapter 4). To address the question of potential matrix effects of environmental samples, matrix effects and recovery rates of sample preparation procedures, which have been developed specifically for the application of the qNMR method were investigated using PET fibers as an example (Chapter 5). It could be shown that environmental matrices do not interfere with the quantitative analysis of MP using qNMR methods. Specific sample preparation methods developed for qNMR analysis can be used with recovery rates > 80 % for different environmental matrices (Chapter 5). Finally, first orienting investigations for the simultaneous determination of several polymer types in one sample are reported (Chapter 6).