Refine
Document Type
- Diploma Thesis (1)
- Doctoral Thesis (1)
- Part of Periodical (1)
- Study Thesis (1)
Keywords
Institute
Ziel dieser Studienarbeit ist es, eine vorhandene video-see-through Augmented Reality Visualisierung (ARToolKit) anhand von Shaderprogrammierung mit der OpenGL Shading Language um nicht-photorealistische Renderingverfahren zu ergänzen. Dabei sollen nicht nur die virtuellen Objekte mit diesen Verfahren dargestellt, sondern auch die realen vom ARSystem gelieferten Bilder analog stilisiert werden, sodass die Unterscheidbarkeit zwischen Realität und Virtualität abnimmt.
We present a non-linear camera pose estimator, which is able to handle a combined input of point and line feature correspondences. For three or more correspondences, the estimator works on any arbitrary number and choice of the feature type, which provides an estimation of the pose on a preferably small and flexible amount of 2D-3D correspondences. We also give an analysis of different minimization techniques, parametrizations of the pose data, and of error measurements between 2D and 3D data. These will be tested for the usage of point features, lines and the combination case. The result shows the most stable and fast working non-linear parameter set for pose estimation in model-based tracking.
In the context of augmented reality we define tracking as a collection of methods to obtain the position and orientation (pose) of a user. By means of various displaying techniques, this ensures a correct visual overlay of graphical information onto the reality perceived. Precise results for calculation of the camera pose are gained by methods of image processing, usually analyzing the pixels of an image and extracing features, which can be recognized over the image sequence. However, these methods do not regard the process of image synthesis or at least in a very simplyfied way. In contrast, the class of model-based methods assumes a given 3D model of the observed scene. Based on the model data features can be identified to establish correspondences in the camera image. From these feature correspondences the camera pose is calculated. An interesting approach is the strategy of analysis-by-synthesis, regarding the computer graphics rendering process for extending the knowledge about the model by information from image synthesis and other environment variables.
In this thesis the components of a tracking system are identified and further it is analyzed, to what extend information about the model, the rendering process and the environment can contribute to the components for improvement of the tracking process using analysis-by-synthesis. In particular, by using knowledge as topological information, lighting or perspective, the feature synthesis and correspondence finding should lead to visually unambiguous features that can be predicted and evaluated to be suitable for stable tracking of the camera pose.
Ziel dieser Arbeit ist es, markerloses Tracking unter dem Ansatz der Analyse durch Synthese zu realisieren und dabei auf den Einsatz merkmalsbasierter Verfahren zu verzichten. Das Bild einer Kamera und ein synthetisches Bild der Szene sollen durch den Einsatz von Stilisierungstechniken so verändert und angeglichen werden, dass zu dem gegebenen Kamerabild aus einer Auswahl von gerenderten Bildern jenes erkannt werden kann, welches die reale Kamerapose am exaktesten wiedergibt. Es werden Kombinationen von Ähnlichkeitsmaßen und Visualisierungen untersucht, um eine bestmögliche Vergleichbarkeit der Bilder zu erreichen, welche die Robustheit gegen Trackingfehler erhöhen soll.