Refine
Geographic cluster based routing in ad-hoc wireless sensor networks is a current field of research. Various algorithms to route in wireless ad-hoc networks based on position information already exist. Among them algorithms that use the traditional beaconing approach as well as algorithms that work beaconless (no information about the environment is required besides the own position and the destination). Geographic cluster based routing with guaranteed message delivery can be carried out on overlay graphs as well. Until now the required planar overlay graphs are not being constructed reactively.
This thesis proposes a reactive algorithm, the Beaconless Cluster Based Planarization (BCBP) algorithm, which constructs a planar overlay graph and noticeably reduces the number of messages required for that. Based on an algorithm for cluster based planarization it beaconlessly constructs a planar overlay graph in an unit disk graph (UDG). An UDG is a model for a wireless network in which every participant has the same sending radius. Evaluation of the algorithm shows it to be more efficient than the non beaconless variant. Another result of this thesis is the Beaconless LLRAP (BLLRAP) algorithm, for which planarity but not continued connectivity could be proven.