Refine
Particle swarm optimization is an optimization technique based on simulation of the social behavior of swarms.
The goal of this thesis is to solve 6DOF local pose estimation using a modified particle swarm technique introduced by Khan et al. in 2010. Local pose estimation is achieved by using continuous depth and color data from a RGB-D sensor. Datasets are aquired from different camera poses and registered into a common model. Accuracy and computation time of the implementation is compared to state of the art algorithms and evaluated in different configurations.