Refine
Keywords
- Crayfish plague (2)
- Freshwater crayfish (2)
- Aphanomyces astaci (1)
- Astacus astacus (1)
- Procambarus virginalis (1)
- RNA sequencing (1)
Ponds in agricultural landscapes are often used by amphibians as breeding habitat. However, the characteristics of agricultural ponds and especially the surrounding area are usually said to be suboptimal for many amphibian species. Using suboptimal habitats might allow a species’ survival and reproduction, but can have negative consequences at the individual and population level. In the present study, we investigated Palmate Newt (Lissotriton helveticus) populations from an intensive wine-growing region in southern Germany and compared them with populations located in a nearby forested area in terms of biometric traits, age and genetic structure. By analyzing over 900 adult newts from 11 ponds, we could show that newts reproducing in forest ponds were larger than newts reproducing in agricultural ponds. We did not find differences in the newt age and growth rate between habitat types. Therefore, differences in the body size of newts might already existed in larvae and/or juveniles, what might be related to a lower habitat quality for larvae and/or juveniles in the agricultural landscape. Body mass, body condition and sexual dimorphic traits (length of the caudal filament and max. height of the tail) correlated with body size, but no additional effect of the habitat type was found. The analysis of microsatellites revealed a higher genetic diversity in forest ponds. However, no clear sign of inbreeding was observed in any agricultural population, suggesting some degree of gene flow between them. We conclude, that agricultural ponds can be suitable habitats for the Palmate Newt and that conservation effort should aim to preserve them. The observed effects on body size indicate the need to increase the quality of the aquatic and terrestrial habitat for early life stages of this newt species in agricultural landscapes.
Background: For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host’s molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism.
Results: We characterised several novel innate immune-related gene groups in both crayfish spe cies. Across allchallenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. Conclusions: We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors.
Objectives: Crayfish plague disease, caused by the oomycete pathogen Aphanomyces astaci represents one of the greatest risks for the biodiversity of the freshwater crayfish. This data article covers the de novo transcriptome assembly and annotation data of the noble crayfish and the marbled crayfish challenged with Ap. astaci. Following the controlled infection experiment (Francesconi et al. in Front Ecol Evol, 2021, https://doi.org/10.3389/fevo.2021.647037), we conducted a differential gene expression analysis described in (Boštjančić et al. in BMC Genom, 2022, https://doi.org/10.1186/s12864-022-08571-z) Data description: In total, 25 noble crayfish and 30 marbled crayfish were selected. Hepatopancreas tissue was isolated, followed by RNA sequencing using the Illumina NovaSeq 6000 platform. Raw data was checked for quality with FastQC, adapter and quality trimming were conducted using Trimmomatic followed by de novo assembly with Trinity. Assembly quality was assessed with BUSCO, at 93.30% and 93.98% completeness for the noble crayfish and the marbled crayfish, respectively. Transcripts were annotated using the Dammit! pipeline and assigned to KEGG pathways. Respective transcriptome and raw datasets may be reused as the reference transcriptome assemblies for future expression studies.