Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Keywords
- Anabaena sp. (1)
- Calothrix desertica (1)
- Ebullition (1)
- Gas storage capacity (1)
- Lake Kinneret (1)
- biorecovery (1)
- biosynthesis (1)
- cyanobacteria (1)
- digital image analysis (1)
- digital image processing (1)
Lakes and reservoirs are important sources of methane, a potent greenhouse gas. Although freshwaters cover only a small fraction of the global surface, their contribution to global methane emission is significant and this is expected to increase, as a positive feedback to climate warming and exacerbated eutrophication. Yet, global estimates of methane emission from freshwaters are often based on point measurements that are spatio-temporally biased. To better constrain the uncertainties in quantifying methane fluxes from inland waters, a closer examination of the processes transporting methane from sediment to atmosphere is necessary. Among these processes, ebullition (bubbling) is an important transport pathway and is a primary source of uncertainty in quantifying methane emissions from freshwaters. This thesis aims to improve our understanding of ebullition in freshwaters by studying the processes of methane bubble formation, storage and release in aquatic sediments. The laboratory experiments demonstrate that aquatic sediments can store up to ~20% (volumetric content) gas and the storage capacity varies with sediment properties. The methane produced is stored as gas bubbles in sediment with minimal ebullition until the storage capacity is reached. Once the sediment void spaces are created by gas bubble formation, they are stable and available for future bubble storage and transport. Controlled water level drawdown experiments showed that the amounts of gas released from the sediment scaled with the total volume of sediment gas storage and correlated linearly to the drop in hydrostatic pressure. It was hypothesized that not only the timing of ebullition is controlled by sediment gas storage, but also the spatial distribution of ebullition. A newly developed freeze corer, capable of characterizing sediment gas content under in situ environments, enabled the possibility to test the hypothesis in a large subtropical lake (Lake Kinneret, Israel). The results showed that gas content was variable both vertically and horizontally in the lake sediment. Sediment methane production rate and sediment characteristics could explain these variabilities. The spatial distribution of ebullition generally was in a good agreement with the horizontal distribution of depth-averaged (surface 1 m) sediment gas content. While discrepancies were found between sediment depth-integrated methane production and the snapshot ebullition rate, they were consistent in a long term (multiyear average). These findings provide a solid basis for the future development of a process-based ebullition model. By coupling a sediment transport model with a sediment diagenetic model, general patterns of ebullition hotspots can be predicted at a system level and the uncertainties in ebullition flux measurements can be better constrained both on long-term (months to years) and short-term (minutes to hours) scales.
Herein, the particle size distributions (PSDs) and shape analysis of in vivo bioproduced particles from aqueous Au3+ and Eu3+ solutions by the cyanobacterium Anabaena sp. are examined in detail at the nanoscale. Generally, biosynthesis is affected by numerous parameters. Therefore, it is challenging to find the key set points for generating tailored nanoparticles (NPs). PSDs and shape analysis of the Au and Eu-NPs were performed with ImageJ using high-resolution transmission electron microscopy (HR-TEM) images. As the HR-TEM image analysis reflects only a fraction of the detected NPs within the cells, additional PSDs of the complete cell were performed to determine the NP count and to evaluate the different accuracies. Furthermore, local PSDs were carried out at five randomly selected locations within a single cell to identify local hotspots or agglomerations. The PSDs show that particle size depends mainly on contact time, while the particle shape is hardly affected. The particles formed are distributed quite evenly within the cells. HR-PSDs for Au-NPs show an average equivalent circular diameter (ECD) of 8.4 nm (24 h) and 7.2 nm (51 h). In contrast, Eu-NPs preferably exhibit an average ECD of 10.6 nm (10 h) and 12.3 nm (244 h). Au-NPs are classified predominantly as “very round” with an average reciprocal aspect ratio (RAR) of ~0.9 and a Feret major axis ratio (FMR) of ~1.17. Eu-NPs mainly belong to the “rounded” class with a smaller RAR of ~0.6 and a FMR of ~1.3. These results show that an increase in contact time is not accompanied by an average particle growth for Au-NPs, but by a doubling of the particle number. Anabaena sp. is capable of biosorbing and bioreducing dissolved Au3+ and Eu3+ ions from aqueous solutions, generating nano-sized Au and Eu particles, respectively. Therefore, it is a low-cost, non-toxic and effective candidate for a rapid recovery of these sought-after metals via the bioproduction of NPs with defined sizes and shapes, providing a high potential for scale-up.
The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.