Refine
Keywords
- Link Prediction (1) (remove)
Through the increasing availability of access to the web, more and more interactions between people take place in online social networks, such as Twitter or Facebook, or sites where opinions can be exchanged. At the same time, knowledge is made openly available for many people, such as by the biggest collaborative encyclopedia Wikipedia and diverse information in Internet forums and on websites. These two kinds of networks - social networks and knowledge networks - are highly dynamic in the sense that the links that contain the important information about the relationships between people or the relations between knowledge items are frequently updated or changed. These changes follow particular structural patterns and characteristics that are far less random than expected.
The goal of this thesis is to predict three characteristic link patterns for the two network types of interest: the addition of new links, the removal of existing links and the presence of latent negative links. First, we show that the prediction of link removal is indeed a new and challenging problem. Even if the sociological literature suggests that reasons for the formation and resolution of ties are often complementary, we show that the two respective prediction problems are not. In particular, we show that the dynamics of new links and unlinks lead to the four link states of growth, decay, stability and instability. For knowledge networks we show that the prediction of link changes greatly benefits from the usage of temporal information; the timestamp of link creation and deletion events improves the prediction of future link changes. For that, we present and evaluate four temporal models that resemble different exploitation strategies. Focusing on directed social networks, we conceptualize and evaluate sociological constructs that explain the formation and dissolution of relationships between users. Measures based on information about past relationships are extremely valuable for predicting the dissolution of social ties. Hence, consistent for knowledge networks and social networks, temporal information in a network greatly improves the prediction quality. Turning again to social networks, we show that negative relationship information such as distrust or enmity can be predicted from positive known relationships in the network. This is particularly interesting in networks where users cannot label their relationships to other users as negative. For this scenario we show how latent negative relationships can be predicted.