Recent EU-frameworks enforce the implementation of risk mitigation measures for nonpoint-source pesticide pollution in surface waters. Vegetated surface flow treatments systems (VTS) can be a way to mitigate risk of adverse effects in the aquatic ecosystems following unavoidable pollution after rainfall-related runoff events. Studies in experimental wetland cells and vegetated ditch mesocosms with common fungicides, herbicides and insecticides were performed to assess efficiency of VTS. Comprehensive monitoring of fungicide exposure after rainfall-related runoff events and reduction of pesticide concentrations within partially optimised VTS was performed from 2006-2009 at five vegetated detention ponds and two vegetated ditches in the wine growing region of the Southern Palatinate (SW-Germany).
Influence of plant density, size related parameters and pesticide properties in the performance of the experimental devices, and the monitored systems were the focus of the analysis. A spatial tool for prediction of pesticide pollution of surface waters after rainfall-related runoff events was programmed in a geographic information system (GIS). A sophisticated and high resolution database on European scale was built for simulation. With the results of the experiments, the monitoring campaign and further results of the EU-Life Project ArtWET mitigation measures were implemented in a georeferenced spatial decision support system. The database for the GIS tools was built with open data. The REXTOX (ratio of exposure to toxicity) Risk Indicator, which was proposed by the OECD (Organisation for Economic Co-operation and Development), was extended, and used for modeling the risk of rainfall-related runoff exposure to pesticides, for all agricultural waterbodies on European scale. Results show good performance of VTS. The vegetated ditches and wetland cells of the experimental systems showed a very high reduction of more than 90% of pesticide concentrations and potential adverse effects. Vegetated ditches and wetland cells performed significantly better than devices without vegetation. Plant density and sorptivity of the pesticide were the variables with the highest explanatory power regarding the response variable reduction of concentrations. In the experimental vegetated ditches 65% of the reduction of peak concentrations was explained with plant density and KOC. The monitoring campaign showed that concentrations of the fungicides and potential adverse effects of the mixtures were reduced significantly within vegetated ditches (Median 56%) and detention ponds (Median 38%) systems. Regression analysis with data from the monitoring campaign identified plant density and size related properties as explanatory variables for mitigation efficiency (DP: R²=0.57, p<0.001; VD:
R²=0.19, p<0.001). Results of risk model runs are the input for the second tool, simulating three risk mitigation measures. VTS as risk mitigation measures are implemented using the results for plant density and size related performance of the experimental and monitoring studies, supported by additional data from the ArtWET project. Based on the risk tool, simulations can be performed for single crops, selected regions, different pesticide compounds and rainfall events. Costs for implementation of the mitigation measures are estimated. Experiments and monitoring, with focus on the whole range of pesticides, provide novel information on VTS for pesticide pollution. The monitoring campaign also shows that fungicide pollution may affect surface waters. Tools developed for this study are easy to use and are not only a good base for further spatial analysis but are also useful as decision support of the non-scientific community. On a large scale, the tools on the one hand can help to compute external costs of pesticide use with simulation of mitigation costs on three levels, on the other hand feasible measures mitigating or remediating the effects of nonpoint-source pollution can be identified for implementation. Further study of risk of adverse effects caused by fungicide pollution and long-time performance of optimised VTS is needed.
This habilitation thesis deals with the effects of toxicants on freshwater ecosystems and considers different toxicant classes (pesticides, organic toxicants, salinity) and biotic endpoints (taxonomic community structure, trait community structure, ecosystem functions).
The thesis comprises 12 peer-reviewed international publications on these topics. All of the related studies rely on mesocosm or field investigations, or the analysis of field biomonitoring or chemical monitoring data. Publications I and II are devoted to passive sampling of a neonicotinoid insecticide and polycyclic aromatic hydrocarbons (PAHs), respectively. They show that biofouling and a diffusion-limiting membrane can reduce the sampling rate of the pulsed insecticide exposure and that receiving phases of different thicknesses can be used to assess the kinetic regime during field deployment of passive samplers. Publications III to VI mainly focus on trait-based approaches to reveal toxicant effects on invertebrates in streams. An overview on the framework and several applications of a trait-based approach to detect effects of pesticides (SPEARpesticides index) are given in publication III. Publication IV describes the development of a trait database for South-East Australian stream invertebrates and its successful application in the adaptation of SPEARpesticides as well as the development of a salinity index. Moreover, a conceptual model for the future development of trait-based biomonitoring indices is proposed. Publication V reports a mesocom study on the effects of a neonicotinoid insecticide on field-realistic invertebrate communities. The insecticide had long-term effects on the invertebrate communities, which were only detected when grouping the taxa according to their life-history traits. A comprehensive field study employing different pesticide sampling methods including passive sampling and biomonitoring of the invertebrate and microbial communities is presented in publication VI. The study did not find pesticide-induced changes in the microbial communities, but detected adverse effects of current-use pesticides on the invertebrate communities using the trait-based SPEARpesticides index. This index is also applied in a meta-analysis on thresholds for the effects of pesticides on invertebrate communities in publication VII. It is shown that there is a similar dose-response relationship between SPEARpesticides and pesticide toxicity over different biogeographical regions and continents. In addition, the thresholds for effects of pesticides are lower than derived from most mesocosm studies and than considered in regulatory pesticide risk assessment. The publications VIII to X use statistical data analysis approaches to examine effects of toxicants in freshwater ecosystems. Using governmental monitoring data on 331 organic toxicants monitored monthly in 4 rivers over 11 years, publication VIII finds that organic toxicants frequently occurred in concentrations envisaging acute toxic effects on invertebrates and algae even in large rivers. Insecticides and herbicides were the chemical groups mainly contributing to the ecotoxicological risk. Publication IX introduces a novel statistical method based on a similarity index to estimate thresholds for the effects of toxicants or other stressors on ecological communities. The application of the method for deriving thresholds for salinity, heavy metals and pesticides in streams is presented in three case studies. Publication X tackles the question of interactive effects between different toxicants using data from a field study on stream invertebrates in 24 sites of South-East Australia. Both salinity and pesticides exhibited statistically significant effects on the invertebrate communities, but no interaction between the stressors was found. Moreover, salinity acted on a higher taxonomical level than pesticides suggesting evolutionary adaptation of stream invertebrates compared to pesticide stress. Publications XI and XII concentrate on the effects of toxicants on biodiversity, ecosystem functions and ecosystem services, with publication XI summarising different studies related to the ecological risk assessment for these endpoints. A field study on the effects of pesticides and salinity on the ecosystem functions of allochthonous organic matter decomposition, gross primary production and ecosystem respiration is presented in publication XII. Both pesticides and salinity reduced the breakdown of allochthonous organic matter, whereas no effects on the other ecosystem functions were detected. A chapter following these publications synoptically discusses all studies of this habilitation thesis and draws general conclusions. It is stressed that in order to advance the understanding of effects of toxicants on freshwater ecosystems more ecological realism is needed in ecotoxicological approaches and that the spatiotemporal extent of toxicant effects needs more scrutiny.
The loss of biodiversity is recognised on a global scale and also in the anthropogenic landscapes used for agriculture, now covering almost 50% of the global terrestrial land surface. In agriculture pesticides, biologically active chemicals are deliberately distributed to control pests, disease and weeds in the cropped areas. The quantification of remaining semi-naturals structures such as field margins and hedges is a prerequisite to understand the impact of pesticides on biodiversity, since these structures represent habitats for many organisms in agricultural landscapes. The presence of organisms in these habitats and crops is required to obtain an estimate of their potential pesticide exposure. In this text I provide studies on animal groups so far not addressed in risk assessment procedures for the regulation of pesticides such as amphibians, moths and bats. For all groups it becomes apparent that they are present in agricultural landscapes and potentially coincide with pesticide applications indicating a risk. Risk quantification also requires data on the sensitivity of organisms and here data for plants, amphibians and bees are presented. Effects translating to community level were studied for herbicide, insecticide and fertiliser effects in a natural system. After three years the treatments resulted in simplified plant communities with lower species numbers and a reduction in flowering plants. This reduction of flowers is used as an example for an indirect effect and was especially obvious for the effect of an herbicide on the common buttercup. Sublethal herbicide effects for a plant translated in an impact on feeding caterpillars, indicating a reduction in food quality. Insecticide inputs realistic for field margins also reduced moth pollination of white champion flowers by 30%. These indirect effects by distortions of food web characteristics are playing a critical role to understand declines in organism groups, however so far are not accounted for in pesticide risk assessment schemes. The current intense use of pesticides in agriculture and their inherent toxicity may lead to a chemical landscape fragmentation, where populations may not be connected anymore. Source-sink dynamics are important ecological processes and as a final result not only population size but also genetic population structure might be affected. Including potential pesticide impacts as costs in a model for amphibians migrating to breeding ponds in vineyards in Rhineland-Palatinate indicated the isolation of investigated populations. A first validation by analyzing the population structure of the European common frog confirmed the model prediction for some sites. For the regulation of pesticides in Europe a risk assessment is required and for the organisms of the terrestrial habitat a multitude of guidance documents is in place or is recently developed or improved. The results of the presented research indicate that wild plants and especially their reproductive flower stage are highly sensitive and risks are underestimated. Population recovery of arthropods needs a reevaluation at landscape scale and the addition of amphibian risk assessment in regulation procedures is suggested. However, developing or adopting risk assessment procedures and test systems is a time consuming task and therefore the establishment of risk management options is a pragmatic alternative with immediate effects. Artificial wetlands in the agricultural landscape proved to be important foraging sites for bats and their creation could mitigate negative pesticide effects. The integration of direct and indirect effects in a risk assessment scheme for all organism groups addressing also landscape scale and pesticide mixtures requires a long developing time. The establishment of model landscapes where management options and integrated pest management are applied on a larger scale would allow us to study pesticide effects in a realistic scenario and to develop an approach for the agriculture of the future.
Fate and effects of insecticides in vegetated agricultural drainage ditches and constructed wetlands
(2006)
Studies have shown that runoff and spray-drift are important sources of nonpoint-source pesticide pollution of surface waters. Owing to this, public concern over the presence of pesticides in surface and ground water has resulted in intensive scientific efforts to find economical, yet environmentally sound solutions to the problem. The primary objective of this research was to assess the effectiveness of vegetated aquatic systems in providing buffering between natural aquatic ecosystems and agricultural landscape following insecticide associated runoff and spray-drift events. The first set of studies were implemented using vegetated agricultural ditches, one in Mississippi, USA, using pyrethroids (bifenthrin, lambda-cyhalothrin) under simulated runoff conditions and the other in the Western Cape, South Africa using the organophosphate insecticide, azinphos-methyl (AZP), under natural runoff and spray-drift conditions. The second set of studies were implemented using constructed wetlands, one in the Western Cape using AZP under natural spray-drift conditions and the other in Mississippi, USA using the organophosphate MeP under simulated runoff conditions. Results from the Mississippi-ditch study indicated that ditch lengths of less than 300 m would be sufficient to mitigate bifenthrin and lambda-cyhalothrin. In addition, data from mass balance calculations determined that the ditch plants were the major sink (generally > 90%) and/or sorption site for the rapid dissipation of the above pyrethroids from the water column. Similarly, results from the ditch study in South Africa showed that a 180 m vegetated system was effective in mitigating AZP after natural spray drift and low flow runoff events. Analytical results from the first wetland study show that the vegetated wetland was more effective than the non-vegetated wetland in reducing loadings of MeP. Mass balance calculations indicated approximately 90% of MeP mass was associated with the plant compartment. Ninety-six hours after the contamination, a significant negative acute effect of contamination on abundances was found in 8 out of the 15 macroinvertebrate species in both wetland systems. Even with these toxic effects, the overall reaction of macroinvertebrates clearly demonstrated that the impact of MeP in the vegetated wetland was considerably lower than in the non-vegetated wetland. Results from the constructed wetland study in South Africa revealed that concentrations of AZP at the inlet of the 134 m wetland system were reduced by 90% at the outlet. Overall, results from all of the studies in this thesis indicate that the presence of the plant compartment was essential for the effective mitigation of insecticide contamination introduced after both simulated and natural runoff or spray-drift events. Finally, both the vegetated agricultural drainage ditch and vegetated constructed wetland systems studied would be effective in mitigating pesticide loadings introduced from either runoff or spray-drift, in turn lowering or eliminating potential pesticide associated toxic effects in receiving aquatic ecosystems. Data produced in this research provide important information to reduce insecticide risk in exposure assessment scenarios. It should be noted that incorporating these types of best management practices (BMPs) will decrease the risk of acute toxicity, but chronic exposure may still be an apparent overall risk.
The estimation of the potential risk of pesticide entries into streams - and therefore the potential risk for the ecosystems - is an important requirement for the planning of risk mitigation strategies. Especially on the landscape level the required event triggered sampling methods are conjuncted with considerable efforts with regard to input data, time and personnel. To circumvent these problems simulation models form a reasonable alternative. The aims of this work were (A) the development of a simulation tool for the estimation of pesticide entries into surface waters on the landscape level, and (B) the application of the simulator for an exposure- and risk-assessment as well as the assessment of negative effects of pesticides on aquatic communities. Section 1 - Exposure-, Risk- and Effects In sections 1.1 and 1.2 the simulation model was applied to a multitude of small and medium sized streams in an agricultural impacted study area around the city of Braunschweig, Germany. Section 1.3 gives an overview of the simulators field of application and the general system structure. Section 1.1 - Scenario based simulation of runoff-related pesticide entries into small streams on a landscape level (English publication, p. 27): In this paper we present a simulation tool for the simulation of pesticide entry from arable land into adjacent streams. We used the ratio of exposure to toxicity (REXTOX) model proposed by the OECD which was extended to calculate pesticide concentrations in adjacent streams. We simulated the pesticide entry on the landscape level at 737 sites in small streams situated in the central lowland of Germany. The most significant model parameters were the width of the no-application-zone and the degree of plant-interception. The simulation was carried out using eight different environmental scenarios, covering variation of the width of the no-application-zone, climate and seasonal scenarios. The highest in-stream concentrations were predicted at a scenario using no (0 m) buffer zone in conjunction with increased precipitation. According to the predicted concentrations, the risk for the aquatic communities was estimated based on standard toxicity tests and the application of a safety factor. Section 1.2 - Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level (English publication, p. 50): In this study the average numbers of invertebrate species across an arable landscape in central Germany (surveys from 15 years in 90 streams at 202 sites) were assessed for their correlation with environmental factors such as stream width, land use (arable land, forest, pasture, settlement), soil type and agricultural derived stressors. The stress originating from arable land was estimated by the factor "risk of runoff", which was derived from a runoff-model (rainfall induced surface runoff). Multivariate analysis explained 39.9% of the variance in species number, revealing stream width as the most important factor (25.3%) followed by risk of runoff (9.7%). Section 1.3 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Systemaufbau und Anwendungsmöglichkeiten (German publication, p. 61): Section 1.3 contains a short overview of the simulation tool, the field of application and some examples of use, covering the effects of the width of the buffer zone as well as the creation of risk maps on the landscape level. Section 2 - The simulation tool An important aspect for the employment of a simulation model in the context of risk assessment is the applicability in practice: the accessibility of the needed input data, the conversion of the mathematical model into a software application that can be run on any current personnel computer and also an appropriate end-user documentation of the system. Section 1.4 - Informationssystem zur ökotoxikologischen Bewertung der Gewässergüte in Bezug auf Pflanzenschutzmitteleinträge aus der Landwirtschaft - Simulationsmodell und Systemaufbau (German report, p. 67): In this section a general overview of the simulation model as well as the schematic system structure given. Section 1.5 - Benutzerhandbuch (German report, p. 71): The user manual contains details concerning the installation of the system, generation of the required input data and the general use of the system. Moreover it presents some application examples (what-if analyses). Section 1.6 - Technical documentation (German report, p. 104): The technical documentation describes internal structures and processes of the simulation system. Section 1.6 provides information regarding the required structure of input/output tables.